Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martti Kaasalainen is active.

Publication


Featured researches published by Martti Kaasalainen.


Journal of Controlled Release | 2013

Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles

Dongfei Liu; Luis M. Bimbo; Ermei Mäkilä; Francesca Villanova; Martti Kaasalainen; Bárbara Herranz-Blanco; Carla Caramella; Vesa-Pekka Lehto; Jarno Salonen; Karl-Heinz Herzig; Jouni Hirvonen; Hélder A. Santos

Nanoparticulate drug delivery systems offer remarkable opportunities for clinical treatment. However, there are several challenges when they are employed to deliver multiple cargos/payloads, particularly concerning the synchronous delivery of small molecular weight drugs and relatively larger peptides. Since porous silicon (PSi) nanoparticles (NPs) can easily contain high payloads of drugs with various properties, we evaluated their carrier potential in multi-drug delivery for co-loading of the hydrophobic drug indomethacin and the hydrophilic human peptide YY3-36 (PYY3-36). Sequential loading of these two drugs into the PSi NPs enhanced the drug release rate of each drug and also their amount permeated across Caco-2 and Caco-2/HT29 cell monolayers. Regardless of the loading approach used, dual or single, the drug permeation profiles were in good correlation with their drug release behaviour. Furthermore, the permeation studies indicated the critical role of the mucus intestinal layer and the paracellular resistance in the permeation of the therapeutic compounds across the intestinal wall. Loading with PYY3-36 also greatly improved the cytocompatibility of the PSi NPs. Conformational analysis indicated that the PYY3-36 could still display biological activity after release from the PSi NPs and permeation across the intestinal cell monolayers. These results are the first demonstration of the promising potential of PSi NPs for simultaneous multi-drug delivery of both hydrophobic and hydrophilic compounds.


Langmuir | 2012

Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry

Ermei Mäkilä; Luis M. Bimbo; Martti Kaasalainen; Barbara Herranz; Anu J. Airaksinen; Markku Heinonen; Edwin Kukk; Jouni Hirvonen; Hélder A. Santos; Jarno Salonen

Thermally carbonized porous silicon (TCPSi) microparticles were chemically modified with organofunctional alkoxysilane molecules using a silanization process. Before the silane coupling, the TCPSi surface was activated by immersion in hydrofluoric acid (HF). Instead of regeneration of the silicon hydride species, the HF immersion of silicon carbide structure forms a silanol termination (Si-OH) on the surface required for silanization. Subsequent functionalization with 3-aminopropyltriethoxysilane provides the surface with an amine (-NH(2)) termination, while the SiC-type layer significantly stabilizes the functionalized structure both mechanically and chemically. The presence of terminal amine groups was verified with FTIR, XPS, CHN analysis, and electrophoretic mobility measurements. The overall effects of the silanization to the morphological properties of the initial TCPSi were analyzed and they were found to be very limited, making the treatment effects highly predictable. The maximum obtained number of amine groups on the surface was calculated to be 1.6 groups/nm(2), corresponding to 79% surface coverage. The availability of the amine groups for further biofunctionalization was confirmed by successful biotinylation. The isoelectric point (IEP) of amine-terminated TCPSi was measured to be at pH 7.7, as opposed to pH 2.6 for untreated TCPSi. The effects of the surface amine termination on the cell viability of Caco-2 and HT-29 cells and on the in vitro fenofibrate release profiles were also assessed. The results indicated that the surface modification did not alter the loading of the drug inside the pores and also retained the beneficial enhanced dissolution characteristics similar to TCPSi. Cellular viability studies also showed that the surface modification had only a limited effect on the biocompatibility of the PSi.


Biomaterials | 2013

Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy.

Päivi Kinnari; Maija Hyvönen; Ermei Mäkilä; Martti Kaasalainen; Antti Rivinoja; Jarno Salonen; Jouni Hirvonen; Pirjo Laakkonen; Hélder A. Santos

Tumour targeting nanoparticles (NPs) have demonstrated great potential for enhancing anticancer drug delivery to tumour sites and for reducing the side effects of chemotherapy. However, many nanoparticulate delivery systems still lack efficient tumour accumulation. In this work, we present a porous silicon (PSi) nanovector functionalized with a tumour-homing peptide, which targets the mammary-derived growth inhibitor (MDGI) expressing cancer cells both in vitro and in vivo, thereby enhancing the accumulation of the NPs in the tumours. We demonstrated that the tumour homing peptide (herein designated as CooP) functionalized thermally hydrocarbonized PSi (THCPSi) NPs homed specifically to the subcutaneous MDGI-expressing xenograft tumours. The THCPSi-CooP NPs were stable in human plasma and their uptake by MDGI-expressing cancer cells measured by confocal microscopy and flow cytometry was significantly increased compared to the non-functionalized THCPSi NPs. After intravenous injections into nude mice bearing MDGI-expressing tumours, effective targeting was detected and THCPSi-CooP NPs showed ~9-fold higher accumulation in the tumour site compared to the control THCPSi NPs. Accumulation of both NPs in the vital organs was negligible.


International Journal of Pharmaceutics | 2012

Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations.

Martti Kaasalainen; Ermei Mäkilä; Joakim Riikonen; Miia Kovalainen; Kristiina Järvinen; Karl-Heinz Herzig; Vesa-Pekka Lehto; Jarno Salonen

Recently, highly promising results considering the use of porous silicon (PSi) nanoparticles as a controlled and targeted drug delivery system have been published. Drugs are typically loaded into PSi nanoparticles by electrostatic interactions, and the drug-loaded nanoparticles are then administered parenterally in isotonic solutions. Zeta potential has an important role in drug adsorption and overall physical stability of nanosuspensions. In the present study, we used zeta potential measurements to study the impact of the formulation components to the nanosuspension stability. The impact of medium was studied by measuring isoelectric points (IEP) and zeta potentials in isotonic media. The role of drug adsorption was demonstrated with gastrointestinal peptides GLP-1(7-37) and PYY (3-36) and the selection of isotonic additive was demonstrated with peptide-loaded PSi nanoparticles. The results show the notable effect of isotonic solutions and peptide adsorption on zeta potential of PSi nanosuspensions. As a rule of thumb, the sugars (sucrose, dextrose and mannitol) seem to be good media for negatively charged peptide-loaded particles and weak acids (citric- and lactic acid) for positively charged particles. Nevertheless, perhaps the most important rule can be given for isotonic salt solutions which all are very poor media when the stability of nanosuspension is considered.


Molecular Pharmaceutics | 2013

Development of Porous Silicon Nanocarriers for Parenteral Peptide Delivery

Miia Kovalainen; Juha Mönkäre; Martti Kaasalainen; Joakim Riikonen; Vesa-Pekka Lehto; Jarno Salonen; Karl-Heinz Herzig; Kristiina Järvinen

Porous silicon (PSi) is receiving growing attention in biomedical research, for example, in drug and peptide delivery. Inspired by several advantages of PSi, herein, thermally oxidized (TOPSi, hydrophilic), undecylenic acid-treated thermally hydrocarbonized (UnTHCPSi, moderately hydrophilic), and thermally hydrocarbonized (THCPSi, hydrophobic) PSi nanocarriers are investigated for sustained subcutaneous (sc) and intravenous (iv) peptide delivery. The route of administration is shown to affect drastically peptide YY3-36 (PYY3-36) release from the PSi nanocarriers in mice. Subcutaneous nanocarriers are demonstrated to be capable to sustain PYY3-36 delivery over 4 days, with the high absolute bioavailability values of PYY3-36. The pharmacokinetic parameters of PYY3-36 are presented to be similar between the sc PSi nanocarriers despite surface chemistry. In contrast, iv-delivered PSi nanocarriers display significant differences between the surface types. Overall, these results demonstrate the feasibility of PSi nanocarriers for the sustained sc delivery of peptides.


ACS Nano | 2013

Inhibition of influenza A virus infection in vitro by saliphenylhalamide- loaded porous silicon nanoparticles

Luis M. Bimbo; Oxana V. Denisova; Ermei Mäkilä; Martti Kaasalainen; Jef K. De Brabander; Jouni Hirvonen; Jarno Salonen; Laura Kakkola; Denis E. Kainov; Hélder A. Santos

Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.


Acta Biomaterialia | 2015

Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy

Chang-Fang Wang; Ermei Mäkilä; Martti Kaasalainen; Marja Hagström; Jarno Salonen; Jouni Hirvonen; Hélder A. Santos

Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug.


Nanoscale | 2014

Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors

Patrick V. Almeida; Mohammad-Ali Shahbazi; Ermei Mäkilä; Martti Kaasalainen; Jarno Salonen; Jouni Hirvonen; Hélder A. Santos

Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA(+)) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA(+) nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA(+) relies on the capability of the conjugated HA(+) to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA(+)-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.


Biomaterials | 2014

Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering

Mohammad-Ali Shahbazi; Patrick V. Almeida; Ermei Mäkilä; Martti Kaasalainen; Jarno Salonen; Jouni Hirvonen; Hélder A. Santos

The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.


Journal of Nanomaterials | 2012

Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes

Jussi Rytkönen; Riitta Miettinen; Martti Kaasalainen; Vesa-Pekka Lehto; Jarno Salonen; Ale Närvänen

Carboxylic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi-NP) were synthesized, and their opsonization and targeting properties were studied in vitro alongside with in vivo biodistribution. The carboxyl groups on UnTHCPSi were utilized to further functionalize the nanoparticles. In order to reduce the opsonization of the UnTHCPSi-NPs, different sized polyethylene glycol (PEG) were conjugated or adsorbed to the NPs surface. The latter approach, based on hydrophobic interaction, turned out to be more effective in reducing the opsonization and improving the stability of the nanoparticle suspension. The most abundant opsonins after plasma incubation were fibrinogen precursors and IgG. Furthermore, the targeting properties of UnTHCPSi-NPs were studied in vitro with antibodies against glutathione S-transferase (anti-GST). PEGylated NPs conjugated with anti-GST bound to GST-agarose in human plasma nearly 35-fold compared to control NPs, indicating that UnTHCPSi-NPs are suitable for targeting in physiological environment. The in vivo biodistribution inmice revealed that PEGylated UnTHCPSi-NPs, accumulate fast into the liver and the spleen, regardless of the reduced opsonization in vitro. However, autoradiography and transmission electron microscopy showed that majority of the NPs still remained in hepatic blood vessels and sinusoids suggesting a possibility to utilize them as a sustained release platform for payload molecules.

Collaboration


Dive into the Martti Kaasalainen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vesa-Pekka Lehto

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Mohammad-Ali Shahbazi

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ale Närvänen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge