Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martyn D. Ticehurst is active.

Publication


Featured researches published by Martyn D. Ticehurst.


International Journal of Pharmaceutics | 2000

Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide

Martyn D. Ticehurst; Patricia Ann Basford; Christopher Ian Dallman; Timothy Michael Lukas; Peter V. Marshall; Gary A. Nichols; David S. Smith

Micronised particles of revatropate hydrobromide were observed to agglomerate when stored in uncontrolled conditions. Dynamic vapour sorption (DVS), isothermal microcalorimetry, microscopy and particle size measurement by laser diffraction have been used to study micronised revatropate hydrobromide. The rate and extent of agglomeration were dependent on the energy of the micronisation process, the sampling point for bulk within the mill and the humidity during storage. The agglomeration was attributed to the recrystallisation of disordered regions on the particles of revatropate hydrobromide generated during micronisation. This recrystallisation was assessed qualitatively and quantitatively, compared against spray-dried amorphous material, using DVS and isothermal microcalorimetry, respectively. A correlation was established between the energy of micronisation and the level of disorder within the micronised powder. A comparison of the DVS profiles of freshly prepared and aged micronised revatropate hydrobromide suggests an increased physical stability for the aged material.


European Journal of Pharmaceutical Sciences | 2000

An exploration of inter-relationships between contact angle, inverse phase gas chromatography and triboelectric charging data.

N.Marilyn Ahfat; Graham Buckton; Robert Burrows; Martyn D. Ticehurst

Surfaces of pharmaceutical powders have been assessed using contact angle, inverse phase gas chromatography (IGC) and triboelectric (electrostatic) charging techniques. The suitability of the Dynamic Angle Tester (DAT), an instrument based on the sessile drop technique, in determining contact angles and then the surface energy of pharmaceutical powders was assessed. The dispersive components of the surface energy of powders determined from the DAT and IGC method ranked the powders in the same order. The dispersive component values obtained by IGC were, as expected, higher than those from the DAT, due to IGC probing the highest energy sites on the powder surface. IGC and triboelectric studies allow materials to be characterised in terms of their electron donating-accepting tendencies, so inter-relationships between the data from the two techniques were explored. Although the data set was limited, there appeared to be a correlation between the charges developed by the powders on contact with stainless steel and the ratio of the electron-donating to electron-accepting tendencies of the materials as obtained from IGC.


International Journal of Pharmaceutics | 2002

Application of slurry bridging experiments at controlled water activities to predict the solid-state conversion between anhydrous and hydrated forms using theophylline as a model drug

Martyn D. Ticehurst; Richard Anthony Storey; Claire Watt

The role of water activity (a(w)), relative humidity (RH) and temperature on the hydration state of theophylline has been investigated. Slurry bridging experiments at controlled water activities, using powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA) to characterise the solid phase, established that the hydrate is the thermodynamically stable form of theophylline at a(w) > or = 0.5 at 4 degrees C, a(w) > or = 0.64 at 30 degrees C, and a(w) > or = 0.76 at 40 degrees C. These data were used to produce a phase stability diagram for anhydrous/hydrate theophylline versus temperature. Anhydrous theophylline was spray dried in an attempt to reduce crystallinity. The spray dried theophylline was stored at a range of temperatures (4-40 degrees C) and humidities (22-89% RH). Samples were analysed at 3, 6, 9, 26 and 52 weeks using TGA and at the 26 and 52 weeks by PXRD. The solid state stability of the spray dried theophylline closely correlated to the phase stability diagram produced using the slurry bridging experiments. The data suggest that the slurry bridging technique at controlled water activities provides an accurate method of rapidly predicting the physically stable form in anhydrous/hydrate systems.


International Journal of Pharmaceutics | 2010

The enhanced aerosol performance of salbutamol from dry powders containing engineered mannitol as excipient

Waseem Kaialy; Gary P. Martin; Martyn D. Ticehurst; Mohammed N. Momin; Ali Nokhodchi

The aim of the present study was to investigate the effect of crystallising mannitol from different binary mixtures of acetone/water on the resultant physical properties and to determine the effects of any changes on in vitro aerosolisation performance, when the different mannitol crystals were used as a carrier in dry powder inhaler formulations containing salbutamol sulphate. Mannitol particles were crystallised under controlled conditions by dissolving the sugar in water and precipitating the sugar using binary mixtures of acetone/water in different percentages as anti-solvent media. For comparison purposes the physical properties and deposition behaviour of commercially available mannitol were also studied. SEM showed that all crystallised mannitol particles were more elongated than the commercial mannitol. Solid state studies revealed that commercial mannitol and mannitol crystallised using acetone in the presence of 10-25% v/v water as anti-solvent was beta-polymorphic form whereas mannitol crystallised in the presence of a small amount of water (0-7.5%) was the alpha-form. All the crystallised mannitol samples showed poor flowability. Nevertheless, the powdered crystallised mannitol and commercial samples were blended with salbutamol in the ratio 67.5:1. The aerosolisation performance of the formulations containing the engineered mannitol (evaluated using Multi Stage Liquid Impinger) was considerably better than that of the commercial mannitol formulation (the fine particle fraction was increased from 15.42% to 33.07-43.99%, for the formulations containing crystallised mannitol). Generally, carriers having a high tapped density and high fraction of fine carrier particles produced a high FPF. The improvement in the DPI performance could be attributed to the presence of elongated carrier particles with smooth surfaces since these are believed to have less adhesive forces between carrier and the drug resulting in easier detachment of the drug during the inhalation.


Colloids and Surfaces B: Biointerfaces | 2010

Engineered mannitol as an alternative carrier to enhance deep lung penetration of salbutamol sulphate from dry powder inhaler.

Waseem Kaialy; Mohammed N. Momin; Martyn D. Ticehurst; John E. Murphy; Ali Nokhodchi

In this research mannitol particles were prepared by recrystallisation using non-solvent precipitation technique to investigate the effect of engineered carrier particles on their physicochemical properties and the in vitro deposition profiles of a model drug (salbutamol sulphate (SS)) from a dry powder inhaler (DPI). To this end, mannitol aqueous solution (15%, w/v) was added to different ratios of ethanol:water (100:0, 95:5, 90:10 and 85:15) to obtain mannitol particles. These crystallised mannitol particles were analysed in terms of micromeritic properties, morphology, DSC, FT-IR, and in vitro fine particle fraction (FPF) and emitted dose (ED) of SS. The results showed that the elongation ratio of all the recrystallised mannitol batches was higher than the original material giving them a needle-shaped morphology. Salbutamol sulphate deposition profiles from DPI formulation containing recrystallised needle-shaped mannitol showed enhanced performance and better delivery to the lower MSLI stages. The FPF increased from 15.4+/-1.1 to 45.8+/-0.7% when the commercial mannitol was replaced by mannitol crystallised from ethanol:water (90:10). This improvement could be due to the presence of elongated mannitol crystals in formulation blends. Solid state characterisation of engineered mannitol showed that the commercial mannitol was beta-form, mannitol recrystallised from ethanol:water (85:15) was alpha-form and that samples recrystallised in presence of pure ethanol or other ratios of ethanol:water (95:5 and 90:10) were the mixtures of alpha-, beta- and delta-forms. Multi-solvent recrystallisation technique was proved to have potential to produce mannitol crystals suitable for enhanced aerosolisation efficiency. Comparing different crystallised mannitol formulations showed that the final form (the type of polymorph) of the crystallised mannitol does not have a substantial effect on salbutamol sulphate aerosolisation performance.


Aaps Journal | 2011

Characterisation and Deposition Studies of Recrystallised Lactose from Binary Mixtures of Ethanol/Butanol for Improved Drug Delivery from Dry Powder Inhalers

Waseem Kaialy; Gary P. Martin; Martyn D. Ticehurst; Paul G. Royall; Mohammad Mohammad; John E. Murphy; Ali Nokhodchi

Dry powder inhaler formulations comprising commercial lactose–drug blends can show restricted detachment of drug from lactose during aerosolisation, which can lead to poor fine particle fractions (FPFs) which are suboptimal. The aim of the present study was to investigate whether the crystallisation of lactose from different ethanol/butanol co-solvent mixtures could be employed as a method of altering the FPF of salbutamol sulphate from powder blends. Lactose particles were prepared by an anti-solvent recrystallisation process using various ratios of the two solvents. Crystallised lactose or commercial lactose was mixed with salbutamol sulphate and in vitro deposition studies were performed using a multistage liquid impinger. Solid-state characterisation results showed that commercial lactose was primarily composed of the α-anomer whilst the crystallised lactose samples comprised a α/β mixture containing a lower number of moles of water per mole of lactose compared to the commercial lactose. The crystallised lactose particles were also less elongated and more irregular in shape with rougher surfaces. Formulation blends containing crystallised lactose showed better aerosolisation performance and dose uniformity when compared to commercial lactose. The highest FPF of salbutamol sulphate (38.0 ± 2.5%) was obtained for the lactose samples that were crystallised from a mixture of ethanol/butanol (20:60) compared to a FPF of 19.7 ± 1.9% obtained for commercial lactose. Engineered lactose carriers with modified anomer content and physicochemical properties, when compared to the commercial grade, produced formulations which generated a high FPF.


International Journal of Pharmaceutics | 2012

Dry powder inhalers: Mechanistic evaluation of lactose formulations containing salbutamol sulphate

Waseem Kaialy; Martyn D. Ticehurst; Ali Nokhodchi

The purpose of this study was to evaluate the relationships between physicochemical properties and aerosolisation performance of different grades of lactose. In order to get a wide range of physicochemical properties, various grades of lactose namely Flowlac 100 (FLO), Lactopress anhydrous 250 (LAC), Cellactose 80 (CEL), Tablettose 80 (TAB), and Granulac 200 (GRA) were used. The different lactose grades were carefully sieved to separate 63-90 μm particle size fractions and then characterised in terms of size, shape, density, flowability, and solid state. Formulations were prepared by blending each lactose with salbutamol sulphate (SS) at ratio of 67.5:1 (w/w), and then evaluated in terms of SS content uniformity, lactose-SS adhesion properties, and in vitro aerosolisation performance delivered from the Aerolizer. Sieved lactose grades showed similar particle size distributions (PSDs) and good flow properties but different particle shape, particle surface texture, and particle solid state. Content uniformity assessments indicated that lactose particles with rougher surface produced improved SS homogeneity within DPI formulation powders. Lactose-SS adhesion assessments indicated that lactose particles with more elongated shape and the rougher surface showed smaller adhesion force between lactose and salbutamol sulphate. Lactose powders with higher bulk density and higher tap density produced smaller emission (EM) and higher drug loss (DL) of SS. In vitro aerosolisation for various lactose grades followed the following rank order in terms of deposition performance: GRA>TAB>LAC ≈ CEL>FLO. Linear relationships were established showing that in order to maximize SS delivery to lower airway regions, lactose particles with more elongated shape, more irregular shape, and rougher surface are preferred. Therefore, considerable improvement in DPI performance can be achieved by careful selection of grade of lactose included within DPI formulations.


Journal of Pharmaceutical Sciences | 2011

Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol—acetone

Waseem Kaialy; Martyn D. Ticehurst; John E. Murphy; Ali Nokhodchi

It has been shown that dry powder inhaler (DPI) formulations typically achieve low fine particle fractions (poor performance). A commonly held theory is that this is due, at least in part, to low levels of detachment of drug from lactose during aerosolization as a result of strong adhesion of drug particles to the carrier surfaces. Therefore, the purpose of the present study is to overcome poor aerosolization performance of DPI formulation by modification of lactose particles. Lactose particles were crystallized by adding solution in water to different ratios of binary mixtures of ethanol-acetone. The results showed that modified lactose particles had exceptional aerosolization performance that makes them superior to commercial lactose particles. Morphology assessment showed that crystallized lactose particles were less elongated, more irregular in shape, and composed of smaller primary lactose particles compared with commercial lactose. Solid-state characterization showed that commercial lactose particles were α-lactose monohydrate, whereas crystallized lactose particles were a mixture of α-lactose monohydrate and β-lactose according to the ratio of ethanol-acetone used during crystallization process. The enhanced performance could be mainly due to rougher surface and/or higher amounts of fines compared with the lactose crystallized from pure ethanol or commercial lactose.


International Journal of Pharmaceutics | 1997

Predicting mixing performance using surface energy measurements

N.Marilyn Ahfat; Graham Buckton; Robert Burrows; Martyn D. Ticehurst

Surface energy data determined by contact angle studies were useful in predicting interactions in binary and tertiary systems. The binary systems used were mixes of iron oxide with either microcrystalline cellulose (MCC), magnesium stearate or titanium dioxide. The spreading coefficients as determined from the harmonic mean equation provided an indication as to which powder would predominantly spread over the other in the binary mix. The predicted spreading behaviour was compared with actual performance based upon visual inspection and scanning electron micrographs of the mixes. The ternary systems studied consisted of the above binary mixes and glass. Surface energy data obtained from contact angle studies on the mixes were more accurate than estimates derived from the surface energies of the individual powders at predicting spreading of the mixes onto glass. This work provides a model to predict the mechanism of spreading and mixing of binary and ternary powder mixes.


Journal of Pharmacy and Pharmacology | 2015

Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design

Martyn D. Ticehurst; Ivan Marziano

This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised.

Collaboration


Dive into the Martyn D. Ticehurst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waseem Kaialy

Medway School of Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hassan Larhrib

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge