Martyn F. Symmons
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martyn F. Symmons.
Nature Reviews Immunology | 2014
Martyn F. Symmons; Monique Gangloff; Clare E. Bryant
Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Martyn F. Symmons; Evert Bokma; Eva Koronakis; Colin E. Hughes; Vassilis Koronakis
Bacteria like Escherichia coli and Pseudomonas aeruginosa expel drugs via tripartite multidrug efflux pumps spanning both inner and outer membranes and the intervening periplasm. In these pumps a periplasmic adaptor protein connects a substrate-binding inner membrane transporter to an outer membrane-anchored TolC-type exit duct. High-resolution structures of all 3 components are available, but a pump model has been precluded by the incomplete adaptor structure, because of the apparent disorder of its N and C termini. We reveal that the adaptor termini assemble a β-roll structure forming the final domain adjacent to the inner membrane. The completed structure enabled in vivo cross-linking to map intermolecular contacts between the adaptor AcrA and the transporter AcrB, defining a periplasmic interface between several transporter subdomains and the contiguous β-roll, β-barrel, and lipoyl domains of the adaptor. With short and long cross-links expressed as distance restraints, the flexible linear topology of the adaptor allowed a multidomain docking approach to model the transporter–adaptor complex, revealing that the adaptor docks to a transporter region of comparative stability distinct from those key to the proposed rotatory pump mechanism, putative drug-binding pockets, and the binding site of inhibitory DARPins. Finally, we combined this docking with our previous resolution of the AcrA hairpin–TolC interaction to develop a model of the assembled tripartite complex, satisfying all of the experimentally-derived distance constraints. This AcrA3-AcrB3-TolC3 model presents a 610,000-Da, 270-Å-long efflux pump crossing the entire bacterial cell envelope.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Sune Lobedanz; Evert Bokma; Martyn F. Symmons; Eva Koronakis; Colin E. Hughes; Vassilis Koronakis
Bacteria such as Escherichia coli and Pseudomonas aeruginosa expel antibiotics and other inhibitors via tripartite multidrug efflux pumps spanning the inner and outer membranes and the intervening periplasmic space. A key event in pump assembly is the recruitment of an outer membrane-anchored TolC exit duct by the adaptor protein of a cognate inner membrane translocase, establishing a contiguous transenvelope efflux pore. We describe the underlying interaction of juxtaposed periplasmic exit duct and adaptor coiled-coils in the widespread RND-type pump TolC/AcrAB of E. coli, using in vivo cross-linking to map the extent of intermolecular contacts. Cross-linking of site-specific TolC cysteine variants to wild-type AcrA adaptor identified residues on the lower α-helical barrel domain of TolC, defining a contiguous cluster close to the entrance aperture of the exit duct. Reciprocally, site-specific cross-linking of AcrA cysteine variants to wild-type TolC identified the interaction surface on the adaptor within the N-terminal α-helix of the AcrA coiled-coil. The experimental data allowed a data-driven docking approach to model the interaction surface central to pump assembly. The lowest energy docked model satisfying all of the cross-link distance constraints places the adaptor at the intramolecular groove formed by the TolC entrance helices, aligning the adaptor coiled-coil with the exposed TolC outer helix. A key feature of this positioning is that it allows space for the proposed movement of the inner coil of TolC during transition to its open state.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Xue-Yuan Pei; Philip Hinchliffe; Martyn F. Symmons; Eva Koronakis; Roland Benz; Colin Hughes; Vassilis Koronakis
In bacterial drug resistance and virulence pumps, an inner membrane (IM) transporter and periplasmic adaptor recruit an outer membrane (OM) trimeric TolC exit duct that projects an α-helical tunnel across the periplasm. The TolC periplasmic entrance is closed by densely packed α-helical coiled coils, inner H7/H8, and outer H3/H4, constrained by a hydrogen bond network. On recruitment, these coiled coils must undergo transition to the open state. We present 2.9 Å resolution crystal structures of two sequential TolC open states in which the network is incrementally disrupted and channel conductances defined in lipid bilayers. Superimposition of TolCRS (370 pS) and TolCYFRS (1,000 pS) on the TolCWT closed state (80 pS) showed that in the initial open-state TolCRS, relaxation already causes approximately 14° twisting and expansion of helix H7 at the periplasmic tip, increasing interprotomer distances from 12.2 Å in TolCWT to 18.9 Å. However, in the crystal structure, the weakened Asp374 pore constriction was maintained at the closed state 11.3 Å2. In the advanced open-state TolCYFRS, there was little further expansion at the tip, to interprotomer 21.3 Å, but substantial movement of inner and outer coiled coils dilated the pore constriction. In particular, upon abolition of the TolCYFRS intraprotomer Tyr362–Asp153 link, a redirection of Tyr362 and “bulge” in H3 allowed a simple movement outward of H8, establishing a 50.3 Å2 opening. Root mean square deviations (rmsds) over the coiled coils of the three protomers of TolCRS and TolCYFRS illustrate that, whereas independent movement at the periplasmic tips may feature in the initial stages of opening, full dilation of the pore constriction is entirely symmetrical.
Annual Review of Microbiology | 2013
Philip Hinchliffe; Martyn F. Symmons; Colin Hughes; Vassilis Koronakis
In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.
Molecular Immunology | 2015
Clare E. Bryant; Martyn F. Symmons
The molecular mechanisms by which pattern recognition receptors (PRRs) signal are increasingly well understood. Toll-like receptor 4 (TLR4) signals through two separate pairs of adaptor proteins Mal/MyD88 and Tram/Trif. Structural studies have revealed a common theme for PRR signalling in that their signalling proteins form large macromolecular complexes which are thought to form the active signalling complex. The first of these to be characterised was the MyD88 signalling complex Myddosome. Many questions remain unanswered however. In particular it is unclear whether these signalling complexes form within the living cell, how many of each signalling protein is within the intracellular Myddosome and whether the stoichiometry can vary in a ligand-dependent manner. In this review we will discuss what is known about the macromolecular complexes thought to be important for TLR4 signalling.
Structure | 2013
James Stephenson; Haitao Li; Julia C. Kenyon; Martyn F. Symmons; Dave Klenerman; Andrew M. L. Lever
Summary HIV-1 genomic RNA has a noncoding 5′ region containing sequential conserved structural motifs that control many parts of the life cycle. Very limited data exist on their three-dimensional (3D) conformation and, hence, how they work structurally. To assemble a working model, we experimentally reassessed secondary structure elements of a 240-nt region and used single-molecule distances, derived from fluorescence resonance energy transfer, between defined locations in these elements as restraints to drive folding of the secondary structure into a 3D model with an estimated resolution below 10 Å. The folded 3D model satisfying the data is consensual with short nuclear-magnetic-resonance-solved regions and reveals previously unpredicted motifs, offering insight into earlier functional assays. It is a 3D representation of this entire region, with implications for RNA dimerization and protein binding during regulatory steps. The structural information of this highly conserved region of the virus has the potential to reveal promising therapeutic targets.
Acta Crystallographica Section D-biological Crystallography | 2000
Liam C. Welsh; Martyn F. Symmons; Donald A. Marvin
The major coat protein in the capsid of Pf1 filamentous bacteriophage (Inovirus) forms a helical assembly of about 7000 identical protein subunits, each of which contains 46 amino-acid residues and can be closely approximated by a single gently curved alpha-helix. Since the viral DNA occupies the core of the tubular capsid and appears to make no significant specific interactions with the capsid proteins, the capsid is a simple model system for the study of the static and dynamic properties of alpha-helix assembly. The capsid undergoes a reversible temperature-induced structural transition at about 283 K between two slightly different helix forms. The two forms can coexist without an intermediate state, consistent with a first-order structural phase transition. The molecular model of the higher temperature form was refined using improved X-ray fibre diffraction data and new refinement and validation methods. The refinement indicates that the two forms are related by a change in the orientation of the capsid subunits within the virion, without a significant change in local conformation of the subunits. On the higher temperature diffraction pattern there is a region of observed intensity that is not consistent with a simple helix of identical subunits; it is proposed that the structure involves groups of three subunits which each have a slightly different orientation within the group. The grouping of subunits suggests that a change in subunit libration frequency could be the basis of the Pf1 structural transition; calculations from the model are used to explore this idea.
European Biophysics Journal | 2008
Suzana K. Straus; Walter R. P. Scott; Martyn F. Symmons; Donald A. Marvin
The filamentous bacteriophage (Inovirus) strain Ff (fd, f1, M13) is widely used in molecular biophysics as a simple model system. A low resolution molecular model of the fd protein coat has been reported, derived from iterative helical real space reconstruction of cryo-electron micrographs (cryoEM). This model is significantly different from the model previously derived from X-ray fibre diffraction and solid-state NMR. We show that the cryoEM model agrees neither with solid-state NMR data nor with X-ray fibre diffraction data of fd, and has some puzzling structural features, for instance nanometre holes through the protein coat. We refine the cryoEM model against the X-ray data, and find that the model after refinement closely approximates the model derived directly from X-ray fibre diffraction and solid-state NMR data. We suggest possible reasons for the differences between the models derived from cryoEM and X-ray diffraction.
Frontiers in Microbiology | 2015
Martyn F. Symmons; Robert L. Marshall; Vassiliy N. Bavro
Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.