Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martyn T. Smith is active.

Publication


Featured researches published by Martyn T. Smith.


Science | 2010

Environment and Disease Risks

Stephen M. Rappaport; Martyn T. Smith

A new paradigm is needed to assess how a lifetime of exposure to environmental factors affects the risk of developing chronic diseases. Although the risks of developing chronic diseases are attributed to both genetic and environmental factors, 70 to 90% of disease risks are probably due to differences in environments (1–3). Yet, epidemiologists increasingly use genome-wide association studies (GWAS) to investigate diseases, while relying on questionnaires to characterize “environmental exposures.” This is because GWAS represent the only approach for exploring the totality of any risk factor (genes, in this case) associated with disease prevalence. Moreover, the value of costly genetic information is diminished when inaccurate and imprecise environmental data lead to biased inferences regarding gene-environment interactions (4). A more comprehensive and quantitative view of environmental exposure is needed if epidemiologists are to discover the major causes of chronic diseases.


Science | 2004

Hematotoxicity in Workers Exposed to Low Levels of Benzene

Qing Lan; Luoping Zhang; Guilan Li; Roel Vermeulen; Rona S. Weinberg; Mustafa Dosemeci; Stephen M. Rappaport; Min Shen; Blanche P. Alter; Yongji Wu; William Kopp; Suramya Waidyanatha; Charles S. Rabkin; Weihong Guo; Stephen Chanock; Richard B. Hayes; Martha S. Linet; Sungkyoon Kim; Songnian Yin; Nathaniel Rothman; Martyn T. Smith

Benzene is known to have toxic effects on the blood and bone marrow, but its impact at levels below the U.S. occupational standard of 1 part per million (ppm) remains uncertain. In a study of 250 workers exposed to benzene, white blood cell and platelet counts were significantly lower than in 140 controls, even for exposure below 1 ppm in air. Progenitor cell colony formation significantly declined with increasing benzene exposure and was more sensitive to the effects of benzene than was the number of mature blood cells. Two genetic variants in key metabolizing enzymes, myeloperoxidase and NAD(P)H:quinone oxidoreductase, influenced susceptibility to benzene hematotoxicity. Thus, hematotoxicity from exposure to benzene occurred at air levels of 1 ppm or less and may be particularly evident among genetically susceptible subpopulations.


Free Radical Biology and Medicine | 2000

Potential health impacts of excessive flavonoid intake

Christine F. Skibola; Martyn T. Smith

Plant flavonoids are common dietary components that have many potent biological properties. Early studies of these compounds investigated their mutagenic and genotoxic activity in a number of in vitro assays. Recently, a renewed interest in flavonoids has been fueled by the antioxidant and estrogenic effects ascribed to them. This has led to their proposed use as anticarcinogens and cardioprotective agents, prompting a dramatic increase in their consumption as dietary supplements. Unfortunately, the potentially toxic effects of excessive flavonoid intake are largely ignored. At higher doses, flavonoids may act as mutagens, pro-oxidants that generate free radicals, and as inhibitors of key enzymes involved in hormone metabolism. Thus, in high doses, the adverse effects of flavonoids may outweigh their beneficial ones, and caution should be exercised in ingesting them at levels above that which would be obtained from a typical vegetarian diet. The unborn fetus may be especially at risk, since flavonoids readily cross the placenta. More research on the toxicological properties of flavonoids is warranted given their increasing levels of consumption.


Lancet Oncology | 2006

Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium

Nathaniel Rothman; Christine F. Skibola; Sophia S. Wang; Gareth J. Morgan; Qing Lan; Martyn T. Smith; John J. Spinelli; Eleanor V. Willett; Silvia de Sanjosé; Pierluigi Cocco; Sonja I. Berndt; Paul Brennan; Angela Brooks-Wilson; Sholom Wacholder; Nikolaus Becker; Patricia Hartge; Tongzhang Zheng; Eve Roman; Elizabeth A. Holly; Paolo Boffetta; Bruce K. Armstrong; Wendy Cozen; Martha S. Linet; F. Xavier Bosch; Maria Grazia Ennas; Theodore R. Holford; Richard P. Gallagher; Sara Rollinson; Paige M. Bracci; James R. Cerhan

BACKGROUND Common genetic variants in immune and inflammatory response genes can affect the risk of developing non-Hodgkin lymphoma. We aimed to test this hypothesis using previously unpublished data from eight European, Canadian, and US case-control studies of the International Lymphoma Epidemiology Consortium (InterLymph). METHODS We selected 12 single-nucleotide polymorphisms for analysis, on the basis of previous functional or association data, in nine genes that have important roles in lymphoid development, Th1/Th2 balance, and proinflammatory or anti-inflammatory pathways (IL1A, IL1RN, IL1B, IL2, IL6, IL10, TNF, LTA, and CARD15). Genotype data for one or more single-nucleotide polymorphisms were available for 3586 cases of non-Hodgkin lymphoma and for 4018 controls, and were assessed in a pooled analysis by use of a random-effects logistic regression model. FINDINGS The tumour necrosis factor (TNF) -308G-->A polymorphism was associated with increased risk of non-Hodgkin lymphoma (p for trend=0.005), particularly for diffuse large B-cell lymphoma, the main histological subtype (odds ratio 1.29 [95% CI 1.10-1.51] for GA and 1.65 [1.16-2.34] for AA, p for trend <0.0001), but not for follicular lymphoma. The interleukin 10 (IL10) -3575T-->A polymorphism was also associated with increased risk of non-Hodgkin lymphoma (p for trend=0.02), again particularly for diffuse large B-cell lymphoma (p for trend=0.006). For individuals homozygous for the TNF -308A allele and carrying at least one IL10 -3575A allele, risk of diffuse large B-cell lymphoma doubled (2.13 [1.37-3.32], p=0.00083). INTERPRETATION Common polymorphisms in TNF and IL10, key cytokines for the inflammatory response and Th1/Th2 balance, could be susceptibility loci for non-Hodgkin lymphoma. Moreover, our results underscore the importance of consortia for investigating the genetic basis of chronic diseases like cancer.


Environment International | 2009

Formaldehyde in China: Production, consumption, exposure levels, and health effects

Xiaojiang Tang; Yang Bai; Anh Duong; Martyn T. Smith; Laiyu Li; Luoping Zhang

Formaldehyde, an economically important chemical, is classified as a human carcinogen that causes nasopharyngeal cancer and probably leukemia. As China is the largest producer and consumer of formaldehyde in the world, the Chinese population is potentially at increased risk for cancer and other associated health effects. In this paper we review formaldehyde production, consumption, exposure, and health effects in China. We collected and analyzed over 200 Chinese and English documents from scientific journals, selected newspapers, government publications, and websites pertaining to formaldehyde and its subsequent health effects. Over the last 20 years, Chinas formaldehyde industry has experienced unprecedented growth, and now produces and consumes one-third of the worlds formaldehyde. More than 65% of the Chinese formaldehyde output is used to produce resins mainly found in wood products - the major source of indoor pollution in China. Although the Chinese government has issued a series of standards to regulate formaldehyde exposure, concentrations in homes, office buildings, workshops, public places, and food often exceed the national standards. In addition, there have been numerous reports of formaldehyde-induced health problems, including poisoning and cancer. The lack of quality epidemiological studies and basic data on exposed populations emphasizes the need for more extensive studies on formaldehyde and its related health effects in China.


Environmental Health Perspectives | 2010

An Emerging Role for Epigenetic Dysregulation in Arsenic Toxicity and Carcinogenesis

Xuefeng Ren; Cliona M. McHale; Christine F. Skibola; Allan H. Smith; Martyn T. Smith; Luoping Zhang

Background Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. Objective We examined the evidence supporting the roles of the three major epigenetic mechanisms—DNA methylation, histone modification, and microRNA (miRNA) expression—in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. Data sources and synthesis We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. Conclusions Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.


Toxicology and Applied Pharmacology | 1987

An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure

David A. Eastmond; Martyn T. Smith; Richard D. Irons

Benzene-induced myelotoxicity can be reproduced by the coadministration of two principal metabolites, phenol and hydroquinone. Coadministration of phenol (75 mg/kg) and hydroquinone (25-75 mg/kg) twice daily to B6C3F1 mice for 12 days resulted in a significant loss in bone marrow cellularity in a manner exhibiting a dose-response. One explanation for this potentiation is that phenol stimulates the peroxidase-dependent metabolism of hydroquinone. Addition of phenol to incubations containing horseradish peroxidase, H2O2, and hydroquinone resulted in a stimulation of both hydroquinone removal and benzoquinone formation. Stimulation occurred with phenol as low as 100 microM and with very low concentrations of horseradish peroxidase. When boiled rat liver protein was added to identical incubations containing [14C]hydroquinone, the level of radioactivity recovered as protein bound increased by 37% when phenol was added. Similar results were observed when [14C]hydroquinone was incubated in the presence of activated human leukocytes. Hydroquinone binding was increased by approximately 70% in the presence of phenol. Phenol-induced stimulation of hydroquinone metabolism and benzoquinone formation represents a likely explanation for the bone marrow suppression associated with benzene toxicity.


Analytical Chemistry | 2010

High-performance single cell genetic analysis using microfluidic emulsion generator arrays.

Yong Zeng; Richard Novak; Joe Shuga; Martyn T. Smith; Richard A. Mathies

High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.


Biochemical Pharmacology | 1982

The measurement of lipid peroxidation in isolated hepatocytes

Martyn T. Smith; Hjördis Thor; Pia Hartzell; Sten Orrenius

Different techniques for the measurement of lipid peroxidation in isolated hepatocytes have been compared. Measurements of ethane production, chemiluminescence and fluorescent products correlated extremely well with those of malondialdehyde formation. Of the five different techniques studied, measurements of ethane production and chemiluminescence were found to the the most sensitive indices of lipid peroxidation. Incubation of hepatocytes for up to 4 hr in the presence of ethylmorphine and aminopyrine, at concentrations known to stimulate H2O2 production, completely failed to increase the amount of chemiluminescence, malondialdehyde or ethane produced in these cells, indicating that the drug-stimulated production of H2O2 did not lead to an increased rate of lipid peroxidation, as cells under the experimental conditions employed. The relationship between lipid peroxidation, as measured by chemiluminescence and ethane production, and the cytotoxic effects of bromobenzene and carbon tetrachloride has also been studied. The results obrained further indicate that lipid peroxidation is an important even in carbon tetrachloride hepatotoxicity, but that it appears to be only a subsequent event in bromobenzene toxicity, possibly occurring only as a result of glutathione depletion and cell death.


Annual Review of Public Health | 2010

Advances in Understanding Benzene Health Effects and Susceptibility

Martyn T. Smith

Benzene is a ubiquitous chemical in our environment that causes acute leukemia and probably other hematological cancers. Evidence for an association with childhood leukemia is growing. Exposure to benzene can lead to multiple alterations that contribute to the leukemogenic process, indicating a multimodal mechanism of action. Research is needed to elucidate the different roles of multiple metabolites in benzene toxicity and the pathways that lead to their formation. Studies to date have identified a number of polymorphisms in candidate genes that confer susceptibility to benzene hematotoxicity. However, a genome-wide study is needed to truly assess the role of genetic variation in susceptibility. Benzene affects the blood-forming system at low levels of occupational exposure, and there is no evidence of a threshold. There is probably no safe level of exposure to benzene, and all exposures constitute some risk in a linear, if not supralinear, and additive fashion.

Collaboration


Dive into the Martyn T. Smith's collaboration.

Top Co-Authors

Avatar

Luoping Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Nathaniel Rothman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine F. Skibola

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Guilan Li

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Songnian Yin

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Alan Hubbard

University of California

View shared research outputs
Top Co-Authors

Avatar

Min Shen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge