Marwa M. Safar
Cairo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marwa M. Safar.
Journal of Neurochemistry | 2015
Rania M. Abdelsalam; Marwa M. Safar
Gliptins have been recently shown to conquer neuronal degeneration in cell cultures via modulating glucagon‐like peptide (GLP)‐1. This peptide produced in the gut not only crosses the blood–brain barrier but is also synthesized in the brain and acts on GLP‐1R exerting central anti‐inflammatory and antiapoptotic effects, thus impeding neuronal damage. This study investigated the antiparkinsonian effect of vildagliptin, a dipeptidyl peptidase (DPP)‐4 inhibitor in a rat rotenone model targeting mainly the RAGE‐NFκB/Nrf2‐signaling pathways, to judge the potential anti‐inflammatory/antioxidant effects of the drug. Vildagliptin markedly improved the motor performance in the open field and rotarod tests, effects that were emphasized by the accompanied reduction in striatal dopamine content. It modified the striatal energy level (ADP/ATP) associated with partial antagonism of body weight reduction. This incretin enhancer suppressed nuclear factor (NF)κB and, consequently, the downstream inflammatory mediator tumor necrosis factor‐α. Normalization of receptor for advanced glycated end product (RAGE) is a main finding which justifies the anti‐inflammatory effects of vildagliptin, together with hampering striatal inducible nitric oxide synthase, intracellular adhesion molecule‐1 as well as myeloperoxidase. The antioxidant potential of vildagliptin was depicted as entailing reduction in thiobarbituric acid‐reactive substances and the transcriptional factor Nrf‐2 level. Vildagliptin guarded against neuronal demise through an antiapoptotic effect as reflected by the reduction in the mitochondrial matrix component cytochrome c and the key downstream executioner caspase‐3. In conclusion, vildagliptin is endowed with various neuroprotective effects and thus can be a promising candidate for the management of Parkinsons disease.
Brain Research | 2010
Marwa M. Safar; Dalaal M. Abdallah; Nadia M. Arafa; Mohamed T. Abdel-Aziz
N-methyl-d-aspartate (NMDA) receptor antagonists appear to enhance the anticonvulsant activity of antiepileptic drugs in several models of epilepsy. Therefore, the current study evaluates the modulatory effect of magnesium (Mg(2+)), a non-competitive NMDA receptor antagonist, on a subprotective dose of valproate (VPA) against pentylenetetrazol (PTZ)-induced convulsions. Male Wister rats received either saline or PTZ (60mg/kg, i.p.). The other three groups were pretreated with Mg(2+) (40mg/kg, p.o., 4weeks), single subprotective dose of VPA (100mg/kg, i.p.), or Mg(2+) with VPA, before PTZ injection. PTZ provoked clonic convulsions, reduced GABA content, deranged brain redox status, and elevated nitric oxide (NO). Neither the subprotective dose of VPA nor Mg(2+) alone guarded against clonic seizures invoked by PTZ, an effect that was achieved only by their combination and supported by a significant delay in seizure latency. Moreover, VPA leveled off glycine and aspartate, exerted no effect on glutamate, and unexpectedly reduced GABA and taurine levels. Mg(2+) alone or in combination showed the same pattern on the aforementioned amino acids, except for taurine. All regimens restored glutathione (GSH) and total antioxidant capacity (TAC); however, only VPA normalized NO level. This study demonstrates that Mg(2+) could enhance the antiepileptic efficacy of a subprotective dose of VPA, possibly by improving redox balance and modulation of some brain amino acids.
Life Sciences | 2015
Ayman E. El-Sahar; Marwa M. Safar; Hala F. Zaki; Amina S. Attia; Afaf A. Ain-Shoka
AIMS Ischemic stroke is a major macrovascular complication of diabetes mellitus. Sitagliptin, a dipeptidyl peptidase-IV inhibitor, was recently shown to improve cognitive functions in diabetic rats; hence the present study was conducted to evaluate its protective effect against transient ischemia-reperfusion (I/R) in diabetic animals. MAIN METHODS Diabetes was induced by streptozotocin (40 mg/kg). Six weeks later, cerebral I/R was induced by bicommon carotid occlusion for 15 min followed by 1h reperfusion. Sitagliptin (250 mg/kg; p.o.) was administered daily during the last 2 weeks before I/R. KEY FINDINGS The drug alleviated hippocampal injury inflicted by diabetes and/or I/R injury where it suppressed nuclear factor kappa (NF-κ)B, and consequently the downstream inflammatory cytokines tumor necrosis factor-α and interleukin-6. In parallel, the anti-inflammatory cytokine interleukin-10 was elevated. Antioxidant potential of sitagliptin was depicted, where it reduced neutrophil infiltration, lipid peroxides and nitric oxide associated with replenished reduced glutathione. Decline of excitatory amino acid glutamate content is a main finding which is probably mediated by the NF-κB signaling pathway as well as improved oxidant status. Sitagliptin exerted an anti-apoptotic effect as reflected by the reduction of the mitochondrial matrix component cytochrome -C and the key downstream executioner caspase-3. Histopathological examination corroborated the biochemical data. SIGNIFICANCE These findings suggest that sitagliptin is endowed with neuroprotective properties which are probably mediated by its antioxidant, anti-inflammatory, and anti-apoptotic mechanisms and hence may provide a novel agent for the management of ischemic stroke in diabetics.
Molecular Neurobiology | 2016
Noha F. Abdelkader; Marwa M. Safar; Hesham Salem
The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson’s disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.
Pharmacological Reports | 2015
Marwa M. Safar; Rania M. Abdelsalam
BACKGROUND Sulfurous mineral water and its main active ingredient sodium hydrosulfide (NaHS) are major sources of H2S. The present study aimed to explore their protective effect on one of the serious long-term complications of diabetes; diabetic nephropathy. METHODS Sulfurous mineral water (as drinking water), NaHS (14 μmol/kg/day; ip), and gliclazide (10mg/kg; po) were administered daily for 6 weeks to streptozotocin (STZ)-diabetic rats. RESULTS STZ-induced diabetes was associated with body weight reduction, hyperglycemia, overproduction of glycated hemoglobin, as well as decline in serum insulin, C-peptide, and insulin like growth factor-I. Besides, diabetes impaired kidney functions and imposed oxidative and nitrosative stress as manifested by elevated contents of renal thiobarbituric acid reactive substances and nitric oxide, parallel to reduced glutathione content. These deleterious effects were antagonized by sulfurous water and to a better extent by NaHS. Activities of myeloperoxidase and sorbitol dehydrogenase were not altered by STZ or any of the treatments. However, STZ-induced diabetes was accompanied by an increment of aldose reductase which was only mitigated by gliclazide and NaHS. Histopathological examination of kidney sections corroborated the biochemical findings. CONCLUSION This study suggests a novel therapeutic approach for diabetic nephropathy using H2S donors.
Molecular Neurobiology | 2016
Marwa M. Safar; Hany H. Arab; Sherine M. Rizk; Shohda A. El-Maraghy
Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer’s disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory deficits and AD-like pathological dysfunction.
Pharmacological Reports | 2015
Ayman E. El-Sahar; Marwa M. Safar; Hala F. Zaki; Amina S. Attia; Afaf A. Ain-Shoka
BACKGROUND Recent growing consensus introduced thiazolidinediones, agonists of the nuclear receptor peroxisome proliferator-activated receptor gamma as promising candidates in the management of ischemia in various organs. Thereby, interest was raised to investigate the neuroprotective effects of pioglitazone against transient ischemia/reperfusion (I/R) injury in diabetic rats targeting mainly the oxidative-inflammatory-apoptotic cascades which are involved in this insult. METHODS Forebrain ischemia was induced in streptozotocin-diabetic rats by occlusion of the bilateral common carotid arteries for 15min followed by 1h reperfusion. Pioglitazone (10mg/kg; po) was administered daily for 2 weeks prior to I/R. RESULTS The drug alleviated hippocampal injury inflicted by diabetes and/or I/R injury where it suppressed nuclear factor kappa (NFκB), and consequently the downstream inflammatory cytokines tumor necrosis factor-α and interleukin-6. In parallel, the anti-inflammatory cytokine interleukin-10 was elevated. Antioxidant potential of pioglitazone was depicted, where it reduced neutrophil infiltration, lipid peroxides, nitric oxide associated with replenished reduced glutathione. Decline of excitatory amino acid glutamate content is a main finding which is probably mediated by the NFκB signaling pathway as well as improved oxidant status. Pioglitazone exerted an anti-apoptotic effect as reflected by the reduction of the cytosolic cytochrome c and the key downstream executioner caspase-3. CONCLUSIONS Pioglitazone is endowed with neuroprotective properties which are probably mediated by its antioxidant, anti-inflammatory, and anti-apoptotic mechanisms hence may provide a successful agent for the management of ischemic stroke.
Psychoneuroendocrinology | 2016
Weam W. Ibrahim; Marwa M. Safar; Mahmoud M. Khattab; Azza M. Agha
The prevalence or recurrence of depression is seriously increased in women during the transition to and after menopause. The chronic hypo-estrogenic state of menopause may reduce the response to antidepressants; however the influence of estrogen therapy on their efficacy is still controversial. This study aimed at investigating the effects of combining escitalopram with 17β-estradiol on depression and cognitive impairment induced by ovariectomy, an experimental model of human menopause. Young adult female Wistar rats were subjected to either sham operation or ovariectomy. Ovariectomized animals were treated chronically with escitalopram (10mg/kg/day, i.p) alone or with four doses of 17β-estradiol (40μg/kg, s.c) given prior to the behavioral tests. Co-administration of 17β-estradiol improved escitalopram-induced antidepressant effect in forced swimming test verified as more prominent decrease in the immobility time without opposing its memory enhancing effect in Morris water maze. 17β-estradiol augmented the modulatory effects of escitalopram on the hippocampal levels of brain-derived neurotrophic factor and serotonin reuptake transporter as well as tumor necrosis factor-alpha without altering its effects on the gene expressions of serotonin receptor 1A, estrogen receptors alpha and beta, or acetylcholinestearase content. This combined therapy afforded synergistic protective effects on the brain histopathological architecture, particularly, the hippocampus. The antidepressant effect of 17β-estradiol was abolished by pretreatment with estrogen receptor antagonist, tamoxifen (10mg/kg, p.o). In conclusion, 17β-estradiol-induced antidepressant effect was confined to intracellular estrogen receptors activation. Moreover, 17β-estradiol enhanced escitaloprams efficiency in ameliorating menopausal-like depression, via exerting synergistic neuroprotective and serotonin reuptake transporter modulatory effects, without impeding escitalopram-mediated cognitive improvement.
Canadian Journal of Physiology and Pharmacology | 2014
Marwan Abdelbaset; Marwa M. Safar; Sawsan S. Mahmoud; Seham A. Negm; Azza M. Agha
Statins are the first line treatment for the management of hyperlipidemia. However, the primary adverse effect limiting their use is myopathy. This study examines the efficacy and safety of red yeast rice (RYR), a source of natural statins, as compared with atorvastatin, which is the most widely used synthetic statin. Statin interference with the endogenous synthesis of coenzyme Q10 (CoQ10) prompted the hypothesis that its deficiency may be implicated in the pathogenesis of statin-associated myopathy. Hence, the effects of combination of CoQ10 with either statin have been evaluated. Rats were rendered hyperlipidemic through feeding them a high-fat diet for 90 days, during the last 30 days of the diet they were treated daily with either atorvastatin, RYR, CoQ10, or combined regimens. Lipid profile, liver function tests, and creatine kinase were monitored after 15 and 30 days of drug treatments. Heart contents of CoQ9 and CoQ10 were assessed and histopathological examination of the liver and aortic wall was performed. RYR and CoQ10 had the advantage over atorvastatin in that they lower cholesterol without elevating creatine kinase, a hallmark of myopathy. RYR maintained normal levels of heart ubiquinones, which are essential components for energy production in muscles. In conclusion, RYR and CoQ10 may offer alternatives to overcome atorvastatin-associated myopathy.
Journal of Biochemical and Molecular Toxicology | 2015
Ebtehal Mohammad Fikry; Marwa M. Safar; Wedad A. Hasan; Hala M. Fawzy; Ezz-El-Din S. El-Denshary
The present study examined the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) and adipose‐derived mesenchymal stem cells (AD‐MSCs) in methotrexate (MTX)‐induced pulmonary fibrosis in rats as compared with dexamethasone (Dex). MTX (14 mg/kg, as a single dose/week for 2 weeks, p.o.) induced lung fibrosis as marked by elevation of relative lung weight, malondialdehyde, nitrite/nitrate, interleukin‐4, transforming growth factor‐β1, deposited collagen, as well as increased expression of Bax along with the reduction of reduced glutathione content and superoxide dismutase activity. These deleterious effects were antagonized after treatment either with BM‐MSCs or AD‐MSCs (2 × 106 cells/rat) 2 weeks after MTX to even a better extent than Dex (0.5 mg/kg/ for 7 days, p.o.). In conclusion, BM‐MSC and AD‐MSCs possessed antioxidant, antiapoptotic, as well as antifibrotic effects, which will probably introduce them as remarkable candidates for the treatment of pulmonary fibrosis.