Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marwan Moussa is active.

Publication


Featured researches published by Marwan Moussa.


Radiology | 2013

Irreversible Electroporation: Treatment Effect Is Susceptible to Local Environment and Tissue Properties

Eliel Ben-David; Muneeb Ahmed; Mohammad Faroja; Marwan Moussa; Ayelet Wandel; Jacob Sosna; Liat Appelbaum; Isaac Nissenbaum; S. Nahum Goldberg

PURPOSE To study the effects of the surrounding electrical microenvironment and local tissue parameters on the electrical parameters and outcome of irreversible electroporation (IRE) ablation in porcine muscle, kidney, and liver tissue. MATERIALS AND METHODS Animal Care and Use Committee approval was obtained, and National Institutes of Health guidelines were followed. IRE ablation (n = 90) was applied in muscle (n = 44), kidney (n = 28), and liver (n = 18) tissue in 18 pigs. Two electrodes with tip exposure of 1.5-2 cm were used at varying voltages (1500-3000 V), pulse repetitions (n = 70-100), pulse length (70-100 µsec), and electrode spacing (1.5-2 cm). In muscle tissue, electrodes were placed exactly parallel, in plane, or perpendicular to paraspinal muscle fibers; in kidney tissue, in the cortex or adjacent to the renal medulla; and in liver tissue, with and without metallic or plastic plates placed 1-2 cm from electrodes. Ablation zones were determined at gross pathologic (90-120 minutes after IRE) and immunohistopathologic examination (6 hours after) for apoptosis and heat-shock protein markers. Multivariate analysis of variance with multiple comparisons and/or paired t tests and regression analysis were used for analysis. RESULTS Mean (± standard deviation) ablation zones in muscle were 6.2 cm ± 0.3 × 4.2 cm ± 0.3 for parallel electrodes and 4.2 cm ± 0.8 × 3.0 cm ± 0.5 for in-plane application. Perpendicular orientation resulted in a cross-shaped zone. Orientation significantly affected IRE current applied (28.5-31.7A for parallel, 29.5-39.7A for perpendicular; P = .003). For kidney cortex, ovoid zones of 1.5 cm ± 0.1 × 0.5 cm ± 0.0 to 2.5 cm ± 0.1 × 1.3 cm ± 0.1 were seen. Placement of electrodes less than 5 mm from the medullary pyramids resulted in treatment effect arcing into the collecting system. For liver tissue, symmetric 2.7 cm ± 0.2 × 1.4 cm ± 0.3 coagulation areas were seen without the metallic plate but asymmetric coagulation was seen with the metallic plate. CONCLUSION IRE treatment zones are sensitive to varying electrical conductivity in tissues. Electrode location, orientation, and heterogeneities in local environment must be considered in planning ablation treatment. Online supplemental material is available for this article.


Chemistry and Physics of Lipids | 2012

Synergy in cancer treatment between liposomal chemotherapeutics and thermal ablation.

Muneeb Ahmed; Marwan Moussa; S. Nahum Goldberg

Minimally invasive image-guided tumor ablation using short duration heating via needle-like applicators using energies such as radiofrequency or microwave has seen increasing clinical use to treat focal liver, renal, breast, bone, and lung tumors. Potential benefits of this thermal therapy include reduced morbidity and mortality compared to standard surgical resection and ability to treat non-surgical patients. However, improvements to this technique are required as achieving complete ablation in many cases can be challenging particularly at margins of tumors>3 cm in diameter and adjacent to blood vessels. Thus, one very promising strategy has been to combine thermal tumor ablation with adjuvant nanoparticle-based chemotherapy agents to improve efficiency. Here, we will primarily review principles of thermal ablation to provide a framework for understanding the mechanisms of combination therapy, and review the studies on combination therapy, including presenting preliminary data on the role of such variables as nanoparticle size and thermal dose on improving combination therapy outcome. We will discuss how thermal ablation can also be used to improve overall intratumoral drug accumulation and nanoparticle content release. Finally, in this article we will further describe the appealing off-shoot approach of utilizing thermal ablation techniques not as the primary treatment, but rather, as a means to improve efficiency of intratumoral nanoparticle drug delivery.


Radiology | 2016

Hepatic Radiofrequency Ablation-induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

Muneeb Ahmed; Gaurav Kumar; Marwan Moussa; Wang Y; Nir Rozenblum; Eithan Galun; Goldberg Sn

PURPOSE To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. MATERIALS AND METHODS Rats were used in this institutional animal care and use committee-approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met-negative R3230 tumors for comparison with the native c-Met-positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. RESULTS After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor VEGF levels. Compared with RF ablation alone, RF ablation combined with adjuvant PHA-665752 or semaxanib reduced distant tumor growth, proliferation, and microvascular density. For c-Met-negative tumors, hepatic RF ablation did not increase distant tumor growth, proliferation, or microvascular density compared with sham treatment. CONCLUSION RF ablation of normal liver can stimulate distant subcutaneous tumor growth mediated by HGF/c-Met pathway and VEGF activation. This effect was not observed in c-Met-negative tumors and can be blocked with adjuvant c-Met and VEGF inhibitors.


PLOS ONE | 2014

Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy.

Marwan Moussa; S. Nahum Goldberg; Gaurav Kumar; Rupa R. Sawant; Tatyana Levchenko; Vladimir P. Torchilin; Muneeb Ahmed

Purpose To determine the effect of different drug-loaded nanocarriers (micelles and liposomes) on delivery and treatment efficacy for radiofrequency ablation (RFA) combined with nanodrugs. Materials/Methods Fischer 344 rats were used (n = 196). First, single subcutaneous R3230 tumors or normal liver underwent RFA followed by immediate administration of IV fluorescent beads (20, 100, and 500 nm), with fluorescent intensity measured at 4–24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm) or liposomal (100 nm) preparations of doxorubicin (Dox; targeting HIF-1α) or quercetin (Qu; targeting HSP70). Animals received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg IV, 15 min post-RFA), and RFA with Lipo-Qu or Mic-Qu given 24 hr pre- or 15 min post-RFA (0.3 mg IV). Tumor coagulation and HIF-1α orHSP70 expression were assessed 24 hr post-RFA. Third, the effect of RFA combined with IV Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA) compared to RFA alone on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox and RFA/Mic-Dox at 4–72 hr. Results Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm) and liver (100 nm) (p<0.05). Mic-Dox and Mic-Qu suppressed periablational HIF-1α or HSP70 rim thickness more than liposomal preparations (p<0.05). RFA/Mic-Dox had greater early (4 hr) intratumoral doxorubicin, but RFA/Lipo-Dox had progressively higher intratumoral doxorubicin at 24–72 hr post-RFA (p<0.04). No difference in tumor growth and survival was seen between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-Dox (p<0.03). Conclusion With RF ablation, smaller particle micelles have superior penetration and more effective local molecular modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over time and reduced tumor growth. Accordingly, different carriers provide specific advantages, which should be considered when formulating optimal combination therapies.


Radiology | 2014

Irreversible Electroporation of the Lumbar Vertebrae in a Porcine Model: Is There Clinical-Pathologic Evidence of Neural Toxicity?

A. Tam; Mohamed E. Abdelsalam; Mihai Gagea; Joe E. Ensor; Marwan Moussa; Muneeb Ahmed; S. Nahum Goldberg; K. Dixon; Amanda McWatters; Jennifer J. Miller; Govindarajan Srimathveeravalli; Stephen B. Solomon; Rony Avritscher; Michael J. Wallace; Sanjay Gupta

PURPOSE To evaluate the effects of irreversible electroporation (IRE) in the porcine spine. MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Twenty computed tomographically guided IRE ablations in either a transpedicular location or directly over the posterior cortex were performed in the lumbar vertebrae of 10 pigs by a single operator. T1- and T2-weighted magnetic resonance (MR) imaging was performed with and without contrast material 2 or 7 days after ablation. Mathematical modeling was performed to estimate the extent of ablation. Clinical, radiologic, pathologic, and simulation findings were analyzed. The Miller low-bias back transformation was used to construct 95% confidence intervals for the mean absolute percentage difference between the maximum length and width of the ablation zone on MR images and pathologic measurements by using square-root-transformed data. RESULTS Bipolar IRE electrode placement and ablation were successful in all cases. The mean distances from the IRE electrode to the posterior wall of the vertebral body or the exiting nerve root were 2.93 mm ± 0.77 (standard deviation) and 7.87 mm ± 1.99, respectively. None of the animals had neurologic deficits. Well-delineated areas of necrosis of bone, bone marrow, and skeletal muscle adjacent to the vertebral body were present. Histopathologic changes showed outcomes that matched with simulation-estimated ablation zones. The percentage absolute differences in the ablation measurements between MR imaging and histopathologic examination showed the following average errors: 24.2% for length and 28.8% for width measurements on T2-weighted images, and 26.1% for length and 33.3% for width measurements on T1-weighted contrast material-enhanced images. CONCLUSION IRE ablation in the porcine spine is feasible and safe and produces localized necrosis with minimal neural toxicity. Signal intensity changes on images acquired with standard MR imaging sequences demonstrate the ablation zone to be larger than that at histopathologic examination.


PLOS ONE | 2015

Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy

Muneeb Ahmed; Gaurav Kumar; Gemma Navarro; Yuanguo Wang; Svetlana Gourevitch; Marwan Moussa; Nir Rozenblum; Tatyana Levchenko; Eithan Galun; Vladimir P. Torchilin; S. Nahum Goldberg

Purpose Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. Methods We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70±2°C for 5 min) and sham procedures without and with administration of 150nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20ug/200ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. Results For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p<0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p<0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p<0.01). Conclusions Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor.


Journal of Vascular and Interventional Radiology | 2013

Adjuvant liposomal doxorubicin markedly affects radiofrequency ablation-induced effects on periablational microvasculature.

Marwan Moussa; S. Nahum Goldberg; Beenish Tasawwar; Rupa R. Sawant; Tatyana Levchenko; Gaurav Kumar; Vladimir P. Torchilin; Muneeb Ahmed

PURPOSE To evaluate the effects of radiofrequency (RF) ablation without and with adjuvant intravenous (IV) liposomal doxorubicin (Doxil) on microvessel morphology and patency and intratumoral drug delivery and retention. MATERIALS AND METHODS There were 133 tumors/animals used in this experiment. First, single subcutaneous tumors (R3230 in Fischer rats and 786-0 in nude mice) were randomly assigned to receive RF ablation alone or no treatment and sacrificed 0-72 hours after treatment. Next, combined RF ablation and liposomal doxorubicin (1 mg given 15 min after RF ablation) was studied in R3230 tumors at 0-72 hours after treatment. Histopathologic assessment, including immunohistochemical staining for cleaved caspase-3, heat-shock protein 70, and CD34, was performed to assess morphologic vessel appearance, vessel diameter, and microvascular density. Subsequently, tumors were randomly assigned to receive RF ablation alone, RF ablation and liposomal doxorubicin, or no treatment (control tumors), followed by IV fluorescent-labeled liposomes (a surrogate marker) given 0-24 hours after RF ablation to permit qualitative assessment. RESULTS RF ablation alone resulted in enlarged and dysmorphic vessels from 0-4 hours, peaking at 12-24 hours after RF ablation, occurring preferentially closer to the electrode. The addition of doxorubicin resulted in earlier vessel contraction (mean vessel area, 47,539 μm(2)±9,544 vs 1,854 μm(2)±458 for RF ablation alone at 15 min; P<.05). Combined RF ablation and liposomal doxorubicin produced similar fluorescence 1 hour after treatment (40.88 AU/μm(2)±33.53 vs 22.1 AU/μm(2)±13.19; P = .14) but significantly less fluorescence at 4 hours (24.3 AU/μm(2)±3.65 vs 2.8 AU/μm(2)±3.14; P<.002) compared with RF ablation alone denoting earlier reduction in microvascular patency. CONCLUSIONS RF ablation induces morphologic changes to vessels within the ablation zone lasting 12-24 hours after treatment. The addition of liposomal doxorubicin causes early vessel contraction and a reduction in periablational microvascular patency. Such changes would likely need to be considered when determining optimal drug administration and imaging paradigms.


Journal of Vascular and Interventional Radiology | 2014

Radiofrequency Ablation–Induced Upregulation of Hypoxia-Inducible Factor-1α Can Be Suppressed with Adjuvant Bortezomib or Liposomal Chemotherapy

Marwan Moussa; S. Nahum Goldberg; Gaurav Kumar; Rupa R. Sawant; Tatyana Levchenko; Vladimir P. Torchilin; Muneeb Ahmed

PURPOSE To characterize upregulation of hypoxia-inducible factor (HIF)-1α after radiofrequency (RF) ablation and the influence of an adjuvant HIF-1α inhibitor (bortezomib) and nanodrugs on modulating RF ablation-upregulated hypoxic pathways. MATERIALS AND METHODS Fisher 344 rats (n = 68) were used. First, RF ablation-induced periablational HIF-1α expression was evaluated in normal liver or subcutaneous R3230 tumors (14-16 mm). Next, the effect of varying RF ablation thermal dose (varying tip temperature 50°C-90°C for 2-20 minutes) on HIF-1α expression was studied in R3230 tumors. Third, RF ablation was performed in R3230 tumors without or with an adjuvant HIF-1α inhibitor, bortezomib (single intraperitoneal dose 0.1 mg/kg). Finally, the combination RF ablation and intravenous liposomal chemotherapeutics with known increases in periablational cellular cytotoxicity (doxorubicin, paclitaxel, and quercetin) was assessed for effect on periablational HIF-1α. Outcome measures included immunohistochemistry of HIF-1α and heat shock protein 70 (marker of nonlethal thermal injury). RESULTS RF ablation increased periablational HIF-1α in both normal liver and R3230 tumor, peaking at 24-72 hours. Tumor RF ablation had similar HIF-1α rim thickness but significantly greater percent cell positivity compared with hepatic RF ablation (P < .001). HIF-1α after ablation was the same regardless of thermal dose. Bortezomib suppressed HIF-1α (rim thickness, 68.7 µm ± 21.5 vs 210.3 µm ± 85.1 for RF ablation alone; P < .02) and increased ablation size (11.0 mm ± 1.5 vs 7.7 mm ± 0.6 for RF ablation alone; P < .002). Finally, all three nanodrugs suppressed RF ablation-induced HIF-1α (ie, rim thickness and cell positivity; P < .02 for all comparisons), with liposomal doxorubicin suppressing HIF-1α the most (P < .03). CONCLUSIONS RF ablation upregulates HIF-1α in normal liver and tumor in a temperature-independent manner. This progrowth, hypoxia pathway can be successfully suppressed with an adjuvant HIF-1α-specific inhibitor, bortezomib, or non-HIF-1α-specific liposomal chemotherapy.


International Journal of Hyperthermia | 2016

Effect of thermal dose on heat shock protein expression after radio-frequency ablation with and without adjuvant nanoparticle chemotherapies

Marwan Moussa; S. Nahum Goldberg; Gaurav Kumar; Tatyana Levchenko; Vladimir P. Torchilin; Muneeb Ahmed

Abstract Purpose: The aim of this study was to evaluate the effect of different radio-frequency ablation (RFA) thermal doses on coagulation and heat shock protein (HSP) response with and without adjuvant nanotherapies. Materials and methods: First, Fischer rats were assigned to nine different thermal doses of hepatic RFA (50–90 °C, 2–20 min, three per group) or no treatment (n = 3). Next, five of these RF thermal doses were combined with liposomal-doxorubicin (Lipo-Dox, 1 mg intravenously) in R3230 breast tumours, or no tumour treatment (five per group). Finally, RFA/Lipo-Dox was given without and with an Hsp70 inhibitor, micellar quercetin (Mic-Qu, 0.3 mg intravenously) for two different RFA doses with similar coagulation but differing peri-ablational Hsp70 (RFA/Lipo-Dox at 70 °C × 5 min and 90 °C × 2 min, single tumours, five per group). All animals were sacrificed 24 h post-RFA and gross tissue coagulation and Hsp70 (maximum rim thickness and % cell positivity) were correlated to thermal dose including cumulative equivalent minutes at 43 °C (CEM43). Results: Incremental increases in thermal dose (CEM43) correlated to increasing liver tissue coagulation (R2 = 0.7), but not with peri-ablational Hsp70 expression (R2 = 0.14). Similarly, increasing thermal dose correlated to increasing R3230 tumour coagulation for RF alone and RFA/Lipo-Dox (R2 = 0.7 for both). The addition of Lipo-Dox better correlated to increasing Hsp70 expression compared to RFA alone (RFA: R2 = 0.4, RFA/Lipo-Dox: R2 = 0.7). Finally, addition of Mic-Qu to two thermal doses combined with Lipo-Dox resulted in greater tumour coagulation (p < 0.0003) for RFA at 90 °C × 2 min (i.e. greater baseline Hsp70 expression) than an RFA dose that produced similar coagulation but less HSP expression (p < 0.0004). Conclusion: Adjuvant intravenous Lipo-Dox increases peri-ablational Hsp70 expression in a thermally dependent manner. Such expression can be exploited to produce greater tumour destruction when adding a second adjuvant nanodrug (Mic-Qu) to suppress peri-ablational HSP expression.


Radiology | 2013

Irreversible Electroporation Ablation: Is All the Damage Nonthermal?

Mohammad Faroja; Muneeb Ahmed; Liat Appelbaum; Eliel Ben-David; Marwan Moussa; Jacob Sosna; Isaac Nissenbaum; S. Nahum Goldberg

Collaboration


Dive into the Marwan Moussa's collaboration.

Top Co-Authors

Avatar

Muneeb Ahmed

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

S. Nahum Goldberg

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Gaurav Kumar

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Goldberg Sn

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eithan Galun

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac Nissenbaum

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge