Mary A. Bittner
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary A. Bittner.
Neuron | 1997
Valery Krasnoperov; Mary A. Bittner; Ronald C. Beavis; Yanan Kuang; Konstantin Salnikow; Oleg G. Chepurny; Alvin R. Little; Alexander N. Plotnikov; Dianqing Wu; Ronald W. Holz; Alexander G. Petrenko
alpha-Latrotoxin is a potent stimulator of neurosecretion. Its action requires extracellular binding to high affinity presynaptic receptors. Neurexin I alpha was previously described as a high affinity alpha-latrotoxin receptor that binds the toxin only in the presence of calcium ions. Therefore, the interaction of alpha-latrotoxin with neurexin I alpha cannot explain how alpha-latrotoxin stimulates neurotransmitter release in the absence of calcium. We describe molecular cloning and functional expression of the calcium-independent receptor of alpha-latrotoxin (CIRL), which is a second high affinity alpha-latrotoxin receptor that may be the major mediator of alpha-latrotoxins effects. CIRL appears to be a novel orphan G-protein-coupled receptor, a member of the secretin receptor family. In contrast with other known serpentine receptors, CIRL has two subunits of the 120 and 85 kDa that are the result of endogenous proteolytic cleavage of a precursor polypeptide. CIRL is found in brain where it is enriched in the striatum and cortex. Expression of CIRL in chromaffin cells increases the sensitivity of the cells to the effects of alpha-latrotoxin, demonstrating that this protein is functional in coupling to secretion. Syntaxin, a component of the fusion complex, copurifies with CIRL on an alpha-latrotoxin affinity column and forms stable complexes with this receptor in vitro. Interaction of CIRL with a specific presynaptic neurotoxin and with a component of the docking-fusion machinery suggests its role in regulation of neurosecretion.
Journal of Biological Chemistry | 2000
Ronald W. Holz; Michael D. Hlubek; Scott D. Sorensen; Stephen K. Fisher; Tamas Balla; Shoichiro Ozaki; Glenn D. Prestwich; Edward L. Stuenkel; Mary A. Bittner
Kinetically distinct steps can be distinguished in the secretory response from neuroendocrine cells with slow ATP-dependent priming steps preceding the triggering of exocytosis by Ca2+. One of these priming steps involves the maintenance of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) through lipid kinases and is responsible for at least 70% of the ATP-dependent secretion observed in digitonin-permeabilized chromaffin cells. PtdIns-4,5-P2is usually thought to reside on the plasma membrane. However, because phosphatidylinositol 4-kinase is an integral chromaffin granule membrane protein, PtdIns-4,5-P2 important in exocytosis may reside on the chromaffin granule membrane. In the present study we have investigated the localization of PtdIns-4,5-P2 that is involved in exocytosis by transiently expressing in chromaffin cells a pleckstrin homology (PH) domain that specifically binds PtdIns-4,5-P2 and is fused to green fluorescent protein (GFP). The PH-GFP protein predominantly associated with the plasma membrane in chromaffin cells without any detectable association with chromaffin granules. Rhodamine-neomycin, which also binds to PtdIns-4,5-P2, showed a similar subcellular localization. The transiently expressed PH-GFP inhibited exocytosis as measured by both biochemical and electrophysiological techniques. The results indicate that the inhibition was at a step after Ca2+ entry and suggest that plasma membrane PtdIns-4,5-P2 is important for exocytosis. Expression of PH-GFP also reduced calcium currents, raising the possibility that PtdIns-4,5-P2 in some manner alters calcium channel function in chromaffin cells.
Journal of Biological Chemistry | 1999
Konstantin Ichtchenko; Mary A. Bittner; Valery Krasnoperov; Alvin R. Little; Oleg G. Chepurny; Ronald W. Holz; Alexander G. Petrenko
Poisoning with α-latrotoxin, a neurotoxic protein from black widow spider venom, results in a robust increase of spontaneous synaptic transmission and subsequent degeneration of affected nerve terminals. The neurotoxic action of α-latrotoxin involves extracellular binding to its high affinity receptors as a first step. One of these proteins, CIRL, is a neuronal G-protein-coupled receptor implicated in the regulation of secretion. We now demonstrate that CIRL has two close homologs with a similar domain structure and high degree of overall identity. These novel receptors, which we propose to name CIRL-2 and CIRL-3, together with CIRL (CIRL-1) belong to a recently identified subfamily of large orphan receptors with structural features typical of both G-protein-coupled receptors and cell adhesion proteins. Northern blotting experiments indicate that CIRL-2 is expressed ubiquitously with highest concentrations found in placenta, kidney, spleen, ovary, heart, and lung, whereas CIRL-3 is expressed predominantly in brain similarly to CIRL-1. It appears that CIRL-2 can also bind α-latrotoxin, although its affinity to the toxin is about 14 times less than that of CIRL-1. When overexpressed in chromaffin cells, CIRL-2 increases their sensitivity to α-latrotoxin stimulation but also inhibits Ca2+-regulated secretion. Thus, CIRL-2 is a functionally competent receptor of α-latrotoxin. Our findings suggest that although the nervous system is the primary target of low doses of α-latrotoxin, cells of other tissues are also susceptible to the toxic effects of α-latrotoxin because of the presence of CIRL-2, a low affinity receptor of the toxin.
Molecular Biology of the Cell | 2011
Arun Anantharam; Mary A. Bittner; Rachel L. Aikman; Edward L. Stuenkel; Sandra L. Schmid; Daniel Axelrod; Ronald W. Holz
The role of dynamin GTPase activity in controlling fusion pore expansion and postfusion granule membrane topology was investigated. The experiments show that, in addition to playing a role in endocytosis, GTPase activity of dynamin regulates the rapidity of fusion pore expansion from tens of milliseconds to seconds after fusion.
Journal of Biological Chemistry | 1999
Valery Krasnoperov; Mary A. Bittner; Ronald W. Holz; Oleg Chepurny; Alexander G. Petrenko
Stimulation of neurotransmitter release by α-latrotoxin requires its binding to the calcium-independent receptor of α-latrotoxin (CIRL), an orphan neuronal G protein-coupled receptor. CIRL consists of two noncovalently bound subunits, p85, a heptahelical integral membrane protein, and p120, a large extracellular polypeptide with domains homologous to lectin, olfactomedin, mucin, the secretin receptor family, and a novel structural motif common for large orphan G protein-coupled receptors. The analysis of CIRL deletion mutants indicates that the high affinity α-latrotoxin-binding site is located within residues 467–891, which comprise the first transmembrane segment of p85 and the C-terminal half of p120. The N-terminal lectin, olfactomedin, and mucin domains of p120 are not required for the interaction with α-latrotoxin. Soluble p120 and all its fragments, which include the 467–770 residues, bind α-latrotoxin with low affinity suggesting the importance of membrane-embedded p85 for the stabilization of the complex of the toxin with p120. Two COOH-terminal deletion mutants of CIRL, one with the truncated cytoplasmic domain and the other with only one transmembrane segment left of seven, supported both α-latrotoxin-induced calcium uptake in HEK293 cells and α-latrotoxin-stimulated secretion when expressed in chromaffin cells, although with a different dose dependence than wild-type CIRL and its N-terminal deletion mutant. Thus the signaling domains of CIRL are not critically important for the stimulation of exocytosis in intact chromaffin cells by α-latrotoxin.
Journal of Neurochemistry | 1988
Mary A. Bittner; Ronald W. Holz
Abstract: Tetanus exotoxin inhibited Ca2+‐dependent cate‐cholamine secretion in a dose‐dependent manner in digito‐nin‐permeabilized chromaffin cells. The inhibition was specific for tetanus exotoxin and the B fragment of tetanus toxin; the C fragment had no effect. Inhibition required the introduction of toxin into the cell, and was not seen when intact cells were preincubated with the toxin or toxin fragments. The degree of inhibition was related to the length of preincubation with toxin, as well as the concentration of toxin used. A short preincubation with toxin was sufficient to inhibit secretion, and the continued presence of toxin in the incubation medium was not required during the incubation with Ca2+. The inhibition of secretion by tetanus toxin or the B fragment was not overcome with increasing Ca2+ concentrations. Tetanus toxin also inhibited catechol‐amine secretion enhanced by phorbol ester‐induced activation of protein kinase C. Thus, the toxin or a proteolytic fragment of the toxin can enter digitonin‐permeabilized cells to interact with a component of the Ca2+‐dependent exocytotic pathway to inhibit secretion.
Journal of Biological Chemistry | 2003
Lei Sun; Mary A. Bittner; Ronald W. Holz
Rim1, a brain-specific Rab3a-binding protein, localizes to the presynaptic cytomatrix and plays an important role in synaptic transmission and synaptic plasticity. Rim2, a homologous protein, is more ubiquitously expressed and is found in neuroendocrine cells as well as in brain. Both Rim1 and Rim2 contain multiple domains, including an N-terminal zinc finger, which in Rim1 strongly enhances secretion in chromaffin and PC12 cells. The yeast two-hybrid technique identified 14-3-3 proteins as ligands of the N-terminal domain. In vitro protein binding experiments confirmed a high-affinity interaction between the N terminus of Rim1 and 14-3-3. The N-terminal domain of Rim2 also bound 14-3-3. The binding domains were localized to a short segment just C-terminal to the zinc finger. 14-3-3 proteins bind to specific phosphoserine residues. Alkaline phosphatase treatment of N-terminal domains of Rim1 and Rim2 almost completely inhibited the binding of 14-3-3. Two serine residues in Rim1 (Ser-241 and Ser-287) and one serine residue in Rim2 (Ser-335) were required for 14-3-3 binding. Incubation with Ca2+/calmodulin-dependent protein kinase II greatly stimulated the interaction of recombinant N-terminal Rim but not the S241/287A mutant with 14-3-3, again indicating the importance of the phosphorylation of these residues for the binding. Rabphilin3, another Rab3a effector, also bound 14-3-3. Serine-to-alanine mutations identified Ser-274 as the likely phosphorylated residue to which 14-3-3 binds. Because the phosphorylation of this residue had been shown to be stimulated upon depolarization in brain slices, the interaction of 14-3-3 with Rabphilin3 may be important in the dynamic function of central nervous system neurons.
Journal of Neurochemistry | 1989
Mary A. Bittner; William H. Habig; Ronald W. Holz
Previous work indicates that the heavy chain of tetanus toxin is responsible for the binding of the toxin to the neuronal membrane and its subsequent internalization. In the present study, the light chain of tetanus toxin mimicked the holotoxin in inhibiting Ca2+‐dependent secretion of [3H]norepinephrine from digitonin‐permeabilized adrenal chromaffin cells. Preincubation of tetanus toxin with monoclonal antibodies to the light chain prevented the inhibition by tetanus toxin. Preincubation of tetanus toxin with nonimmune ascites fluid or with monoclonal antibodies directed against the C fragment (the C‐terminal of the heavy chains or the heavy‐chain portion of the B fragment did not prevent inhibition by tetanus toxin. The data indicate that the light chain is responsible for the intracellular blockade of exostosis.
Cellular and Molecular Neurobiology | 1993
Mary A. Bittner; Ronald W. Holz
Summary1.The effects on catecholamine secretion of activation of protein kinase C and clostridial neurotoxins were examined in digitonin-permeabilized bovine adrenal chromaffin cells.2.The enhancement by phorbol esters increased only the initial rate of secretion; later rates were unaffected. This enhancement was present over a wide range of Ca2+ concentrations and was elicited at 18 as well as at 27°C.3.Tetanus toxin inhibited both ATP-dependent and ATP-independent secretion, indicating that the tetanus toxin target is important during the final steps in the pathway.4.Prior activation of protein kinase C by the phorbol ester 12-O-tetradecanoyl phorbol acetate rendered the primed state more sensitive to inhibition by tetanus toxin. The data indicate that a phosphorylated protein kinase C substrate is either identical to or closely associated with the tetanus toxin target protein at the final steps in the pathway.5.The interaction between the effect of protein kinase activation and that of tetanus toxin suggests that protein kinase C activation does not stimulate a separate pathway of secretion but, rather, modulates the activity of the ongoing pathway.6.The enhancement of secretion by protein kinase C is caused, at least in part, by a qualitative change in the characteristics of the primed state. This is indicated by the increased sensitivity of primed secretion to inhibition by tetanus toxin and a threefold increase in sensitivity of primed secretion to Ca2+.7.Because activation of protein kinase C does not increase the later rates of secretion that are limited by ATP-dependent priming reactions, it is unlikely that enhancement of the maximal rate of secretion by TPA is due to an increased amount of the primed state. Instead, protein kinase C activation may increase the efficacy with which Ca2+ stimulates secretion at all Ca2+ concentrations.
Molecular Biology of the Cell | 2008
Li Wang; Mary A. Bittner; Daniel Axelrod; Ronald W. Holz
We investigated the functional and structural implications of SNAP25 having two SNARE motifs (SN1 and SN2). A membrane-bound, intramolecular FRET probe was constructed to report on the folding of N-terminal SN1 and C-terminal SN2 in living cells. Membrane-bound constructs containing either or both SNARE motifs were also singly labeled with donor or acceptor fluorophores. Interaction of probes with other SNAREs was monitored by the formation of SDS-resistant complexes and by changes in FRET measured in vitro using spectroscopy and in the plasma membrane of living cells using TIRF microscopy. The probes formed the predicted SDS-resistant SNARE complexes. FRET measurements revealed that syntaxin induced a close association of the N-termini of SN1 and SN2. This association required that the SNARE motifs reside in the same molecule. Unexpectedly, the syntaxin-induced FRET was prevented by VAMP. Both full-length SNAP25 constructs and the combination of its separated, membrane-bound constituent chains supported secretion in permeabilized chromaffin cells that had been allowed to rundown. However, only full-length SNAP25 constructs enabled robust secretion from intact cells or permeabilized cells before rundown. The experiments suggest that the bidentate structure permits specific conformations in complexes with syntaxin and VAMP and facilitates the function of SN1 and SN2 in exocytosis.