Mary Alice Coffroth
University at Buffalo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Alice Coffroth.
Molecular Ecology | 2008
Michael K. DeSalvo; Christian R. Voolstra; Shinichi Sunagawa; Jodi A. Schwarz; Jonathon H. Stillman; Mary Alice Coffroth; Alina M. Szmant; Mónica Medina
The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef‐building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non‐heat‐stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium‐scale transcriptomic study focused on revealing the cellular foundation of thermal stress‐induced coral bleaching. We postulate that oxidative stress in thermal‐stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.
Coral Reefs | 2009
L. W. Botsford; J. W. White; Mary Alice Coffroth; Claire B. Paris; Serge Planes; T. L. Shearer; Simon R. Thorrold; Geoffrey P. Jones
Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.
Molecular Phylogenetics and Evolution | 2002
Scott R. Santos; Derek J. Taylor; Robert A. Kinzie; Michio Hidaka; Kazuhiko Sakai; Mary Alice Coffroth
Symbiotic associations between invertebrates and dinoflagellates of the genus Symbiodinium are a common occurrence in marine environments. However, despite our extensive knowledge concerning the physiological contributions of these algae to their symbiotic partners, our understanding of zooxanthella phylogenetics is still in its early stages. In the past 10 years, studies of Symbiodinium phylogenetics have relied solely on nuclear ribosomal (rDNA) genes. To date, organellar DNA sequences have not been employed to infer phylogenies for this genus of symbiotic dinoflagellates. We address this by presenting the first Symbiodinium phylogeny based on chloroplast (cp) large subunit (23S)-rDNA sequences. Cp23S-rDNA Domain V sequences were determined for 35 dinoflagellate cultures isolated from a range of invertebrate host species and geographical locations. Symbiodinium phylogenies inferred from cp23S-rDNA produced topologies that were not statistically different from those generated from nuclear rDNA, providing the first independent evidence supporting the published major clades of Symbiodinium. In addition, comparisons of sequence dissimilarity indicated that cp23S-rDNA Domain V evolves 9-30 times faster than the V1-V4 regions of nuclear small subunit (n18S)-rDNA, 1-7 times as fast as the D1-D3 regions of nuclear large subunit (n28S)-rDNA, and 0.27-2.25 times that of the internal transcribed spacer (ITS)-rDNA region. Our data suggested that cp23S-rDNA Domain V will prove to be a useful molecule for exploring Symbiodinium phylogenetics.
The Biological Bulletin | 2001
Robert A. Kinzie; Michelle Takayama; Scott R. Santos; Mary Alice Coffroth
Coral bleaching, the loss of color due to loss of symbiotic zooxanthellae or their pigment, appears to be increasing in intensity and geographic extent, perhaps related to increasing sea surface temperatures. The adaptive bleaching hypothesis (ABH) posits that when environmental circumstances change, the loss of one or more kinds of zooxanthellae is rapidly, sometimes unnoticeably, followed by formation of a new symbiotic consortium with different zooxanthellae that are more suited to the new conditions in the host’s habitat. Fundamental assumptions of the ABH include (1) different types of zooxanthellae respond differently to environmental conditions, specifically temperature, and (2) bleached adults can secondarily acquire zooxanthellae from the environment. We present simple tests of these assumptions and show that (1) genetically different strains of zooxanthellae exhibit different responses to elevated temperature, (2) bleached adult hosts can acquire algal symbionts with an apparently dose-dependent relationship between the concentration of zooxanthellae and the rate of establishment of the symbiosis, (3) and finally, bleached adult hosts can acquire symbionts from the water column.
Journal of Phycology | 2005
Todd C. LaJeunesse; Georgina M. Lambert; Robert A. Andersen; Mary Alice Coffroth; David W. Galbraith
Using flow cytometric analysis of fluorescence, we measured the genome sizes of 18 cultured “free‐living” species and 29 Symbiodinium spp. isolates cultured from stony corals, gorgonians, anemones, jellyfish, and giant clams. Genome size directly correlated with cell size, as documented previously for most eukaryotic cell lines. Among the smallest of dinoflagellates, Symbiodinium spp. (6–15 μm) possessed the lowest DNA content that we measured (1.5–4.8 pg·cell−1). Bloom‐forming or potentially harmful species in the genera Alexandrium, Karenia, Pfiesteria, and Prorocentrum possessed genomes approximately 2 to 50 times larger in size. A phylogenetic analysis indicated that genome/cell size has apparently increased and decreased repeatedly during the evolution of dinoflagellates. In contrast, genome sizes were relatively consistent across distantly and closely related Symbiodinium spp. This may be the product of intracellular host habitats imposing strong selective pressures that have restricted symbiont size.
Journal of Phycology | 2001
Scott R. Santos; Derek J. Taylor; Mary Alice Coffroth
Zooxanthellae, algal symbionts in divergent marine invertebrate hosts, are a genetically heterogeneous group. All species descriptions and most physiological and infectivity studies of zooxanthellae have been conducted using cultured material. However, few studies have attempted to quantify the representation of cultures isolated from cnidarians to the in hospite zooxanthella populations of the individual host or host species from which they were established. RFLPs of small subunit (18S) rDNA, internal transcribed spacer (ITS)‐rDNA sequence data, and microsatellite analyses were conducted to assess the relatedness between cultured zooxanthellae and the in hospite populations of the individual host or host species from which they were isolated. RFLP data demonstrated that cultures may represent either the numerically dominant symbiont or ones present in lower number. ITS‐rDNA sequences from zooxanthella cultures were disconcordant with ITS‐rDNA sequences identified from in hospite zooxanthellae of the same host species, and microsatellites present in in hospite zooxanthella populations were absent from the corresponding cultures. Finally, reexamination of the literature revealed examples of zooxanthella cultures being nonrepresentative of in hospite populations. These data suggest that, in most cases, cultures are a subset of the original in hospite population. Factors such as failing to homogenize bulk cultures before transfer, growth medium used, and the picking of single motile cells may contribute to many zooxanthella cultures being nonrepresentative.
PLOS ONE | 2012
Till Bayer; Manuel Aranda; Shinichi Sunagawa; Lauren K. Yum; Michael K. DeSalvo; Erika Lindquist; Mary Alice Coffroth; Christian R. Voolstra; Mónica Medina
Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts. Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation.
Marine Biology | 1992
Mary Alice Coffroth; Howard R. Lasker; Margaret E. Diamond; Jeremy A. Bruenn; Eldredge Bermingham
Clonal reproduction, a common life history strategy among sessile marine invertebrates, can lead to high local abundances of one to a few genotypes in a population. Analysis of the clonal structure of such populations can provide insight into the ecological and evolutionary history of the population, but requires markers that can identify individual genets. Forensic and demographic studies have demonstrated that DNA fingerprinting can provide markers that are unique for an individual genotype. We have generated DNA fingerprints for over 70 colonies of the clonal gorgonian, Plexaura A (Plexaura sp. A) collected from June 1990 through July 1991 in the San Blas Islands, Panama. DNA fingerprints within a singic individual were identical and fingerprinting resolved multiple genotypes within and among reefs. On one reef in the San Blas Islands, Panama, 59% of the colonies sampled were of one genotype and this genotype was not found on any other sampled reefs. A previous study using tissue grafts identified 13 putative clones on these reefs, while DNA fingerprints of the same colonies differentiated 17 genotypes. The present study demonstrates the utility of DNA fingerprinting for distinguishing clones and for identifying clonal structure of marine invertebrate populations.
BMC Genomics | 2008
Jodi A. Schwarz; Peter Brokstein; Christian R. Voolstra; Astrid Terry; David J. Miller; Alina M. Szmant; Mary Alice Coffroth; Mónica Medina
BackgroundScleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata.ResultsWe generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata.ConclusionPartial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.
Molecular Ecology | 2004
Scott R. Santos; T. L. Shearer; Andrew R. Hannes; Mary Alice Coffroth
The success of coral reefs is due to obligate mutualistic symbioses involving invertebrates and photosynthetic dinoflagellate symbionts belonging to the genus Symbiodinium. In the Caribbean, the vast majority of octocorals and other invertebrate hosts associate with Symbiodinium clade B, and more selectively, with a single lineage of this clade, Symbiodinium B1/B184. Although B1/B184 represents the most prevalent Symbiodinium in the Caribbean, there is little evidence supporting fine‐scale diversity and host–alga specificity within this lineage. We explored simultaneously the questions of diversity and specificity in Symbiodinium B1/B184 by sequencing the flanking regions of two polymorphic microsatellites from a series of Symbiodinium clade B cultures along with Symbiodinium B1/B184 populations of the octocorals Pseudopterogorgia elisabethae, P. bipinnata and Gorgonia ventalina. Seven unique sequence variants were identified based on concatenation of the two loci. Phylogenetic analyses of these variants, which we refer to as phylotypes, recognized five as belonging to B1/B184, thus providing the first evidence of distinct taxa within this Symbiodinium lineage. Furthermore, sympatric P. elisabethae and P. bipinnata at San Salvador in the Bahamas were found to harbour distinct Symbiodinium B1/B184 phylotypes, demonstrating unequivocally the existence of fine‐scale specificity between Caribbean octocorals and these algae. Taken together, this study exemplifies the complex nature of Symbiodinium biodiversity and specificity.