Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Ann Jordan is active.

Publication


Featured researches published by Mary Ann Jordan.


Nature Reviews Cancer | 2004

Microtubules as a target for anticancer drugs

Mary Ann Jordan; Leslie Wilson

Highly dynamic mitotic-spindle microtubules are among the most successful targets for anticancer therapy. Microtubule-targeted drugs, including paclitaxel and Vinca alkaloids, were previously considered to work primarily by increasing or decreasing the cellular microtubule mass. Although these effects might have a role in their chemotherapeutic actions, we now know that at lower concentrations, microtubule-targeted drugs can suppress microtubule dynamics without changing microtubule mass; this action leads to mitotic block and apoptosis. In addition to the expanding array of chemically diverse antimitotic agents, some microtubule-targeted drugs can act as vascular-targeting agents, rapidly depolymerizing microtubules of newly formed vasculature to shut down the blood supply to tumours.


Nature Reviews Drug Discovery | 2010

Microtubule-binding agents: a dynamic field of cancer therapeutics

Charles Dumontet; Mary Ann Jordan

Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.


Current Opinion in Cell Biology | 1998

Microtubules and actin filaments: dynamic targets for cancer chemotherapy.

Mary Ann Jordan; Leslie Wilson

Microtubules and actin filaments play important roles in mitosis, cell signaling, and motility. Thus these cytoskeletal filaments are the targets of a growing number of anti-cancer drugs. In this review we summarize the current understanding of the mechanisms of these drugs in relation to microtubule and actin filament polymerization and dynamics. In addition, we outline how, by targeting microtubules, drugs inhibit cell proliferation by blocking mitosis at the mitotic checkpoint and inducing apoptosis. The beta-tubulin isotype specificities of new anticancer drugs and the antitumor potential of agents that act on the actin cytoskeleton are also discussed.


Molecular Cancer Therapeutics | 2005

The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth

Mary Ann Jordan; Kathryn Kamath; Tapas Manna; Tatiana Okouneva; Herbert P. Miller; Celia Davis; Bruce A. Littlefield; Leslie Wilson

E7389, which is in phase I and II clinical trials, is a synthetic macrocyclic ketone analogue of the marine sponge natural product halichondrin B. Whereas its mechanism of action has not been fully elucidated, its main target seems to be tubulin and/or the microtubules responsible for the construction and proper function of the mitotic spindle. Like most microtubule-targeted antitumor drugs, it inhibits tumor cell proliferation in association with G2-M arrest. It binds to tubulin and inhibits microtubule polymerization. We examined the mechanism of action of E7389 with purified microtubules and in living cells and found that, unlike antimitotic drugs including vinblastine and paclitaxel that suppress both the shortening and growth phases of microtubule dynamic instability, E7389 seems to work by an end-poisoning mechanism that results predominantly in inhibition of microtubule growth, but not shortening, in association with sequestration of tubulin into aggregates. In living MCF7 cells at the concentration that half-maximally blocked cell proliferation and mitosis (1 nmol/L), E7389 did not affect the shortening events of microtubule dynamic instability nor the catastrophe or rescue frequencies, but it significantly suppressed the rate and extent of microtubule growth. Vinblastine, but not E7389, inhibited the dilution-induced microtubule disassembly rate. The results suggest that, at its lowest effective concentrations, E7389 may suppress mitosis by directly binding to microtubule ends as unliganded E7389 or by competition of E7389-induced tubulin aggregates with unliganded soluble tubulin for addition to growing microtubule ends. The result is formation of abnormal mitotic spindles that cannot pass the metaphase/anaphase checkpoint.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics

A. Gonçalves; Diane Braguer; Kathy Kamath; Laura A. Martello; Claudette Briand; Susan Band Horwitz; Leslie Wilson; Mary Ann Jordan

Microtubule dynamics are crucial for mitotic spindle assembly and chromosome movement. Suppression of dynamics by Taxol appears responsible for the drugs potent ability to inhibit mitosis and cell proliferation. Although Taxol is an important chemotherapeutic agent, development of resistance limits its efficacy. To examine the role of microtubule dynamics in Taxol resistance, we measured the dynamic instability of individual rhodamine-labeled microtubules in Taxol-sensitive and -resistant living human cancer cells. Taxol-resistant A549-T12 and -T24 cell lines were selected from a human lung carcinoma cell line, A549. They are, respectively, 9- and 17-fold resistant to Taxol and require low concentrations of Taxol for proliferation. We found that microtubule dynamic instability was significantly increased in the Taxol-resistant cells. For example, with A549-T12 cells in the absence of added Taxol, microtubule dynamicity increased 57% as compared with A549 cells. The length and rate of shortening excursions increased 75 and 59%, respectively. These parameters were further increased in A549-T24 cells, with overall dynamicity increasing by 167% compared with parental cells. Thus, the decreased Taxol-sensitivity of these cells can be explained by their increased microtubule dynamics. When grown without Taxol, A549-T12 cells were blocked at the metaphase/anaphase transition and displayed abnormal mitotic spindles with uncongressed chromosomes. In the presence of 2–12 nM Taxol, the cells grew normally, suggesting that mitotic block resulted from excessive microtubule dynamics. These results indicate that microtubule dynamics play an important role in Taxol resistance, and that both excessively rapid dynamics and suppressed dynamics impair mitotic spindle function and inhibit proliferation.


Journal of Biological Chemistry | 2005

βIII-Tubulin Induces Paclitaxel Resistance in Association with Reduced Effects on Microtubule Dynamic Instability

Kathy Kamath; Leslie Wilson; Fernando Cabral; Mary Ann Jordan

The development of resistance to paclitaxel in tumors is one of the most significant obstacles to successful therapy. Overexpression of the βIII-tubulin isotype has been associated with paclitaxel resistance in a number of cancer cell lines and in tumors, but the mechanism of resistance has remained unclear. Paclitaxel inhibits cancer cell proliferation by binding to the β-subunit of tubulin in microtubules and suppressing microtubule dynamic instability, leading to mitotic arrest and cell death. We hypothesized that βIII-tubulin overexpression induces resistance to paclitaxel either by constitutively enhancing microtubule dynamic instability in resistant cells or by rendering the microtubules less sensitive to the suppression of dynamics by paclitaxel. Using Chinese hamster ovary cells that inducibly overexpress either βI- or βIII-tubulin, we analyzed microtubule dynamic instability during interphase by microinjection of rhodamine-labeled tubulin and time-lapse fluorescence microscopy. In the absence of paclitaxel, there were no differences in any aspect of dynamic instability between the two β-tubulin-overexpressing cell types. However, in the presence of 150 nm paclitaxel, dynamic instability was suppressed to a significantly lesser extent (suppressed only 12%) in cells overexpressing βIII-tubulin than in cells overexpressing similar levels of βI-tubulin (suppressed 47%). The results suggest that overexpression of βIII-tubulin induces paclitaxel resistance by reducing the ability of paclitaxel to suppress microtubule dynamics. The results also suggest that endogenous regulators of microtubule dynamics may differentially interact with individual tubulin isotypes, supporting the idea that differential expression of tubulin isotypes has functional consequences in cells.


Current Cancer Drug Targets | 2007

How do microtubule-targeted drugs work? An overview.

Mary Ann Jordan; Kathy Kamath

The importance of microtubules in mitosis makes them a superb target for a group of highly successful, chemically diverse anticancer drugs. Knowledge of the mechanistic differences among the many drugs of this class is vital to understanding their tissue and cell specificity, the development of resistance, the design of novel improved drugs, optimal scheduling of treatment, and potential synergistic combinations. This overview covers microtubule assembly dynamics, the exquisite regulation of microtubule dynamics in cells by endogenous regulators, the important role of microtubule dynamics in mitosis, the diversity and number of microtubule-targeted drugs undergoing clinical development, the antimitotic mechanisms of microtubule-targeted drugs with emphasis on suppression of microtubule dynamics by vinblastine and taxol, the role of drug uptake and retention in the efficacy of microtubule-targeted drugs, and the anti-angiogenic and vascular-disrupting mechanisms of microtubule targeted drugs. In view of the success of this class of drugs, it has been argued that microtubules represent the single best cancer target identified to date, and it seems likely that drugs in this class will continue to remain an important chemotherapeutic class of drugs even as more selective chemotherapeutic approaches are developed.


Chemistry & Biology | 1995

Microtubule dynamics: taking aim at a moving target

Leslie Wilson; Mary Ann Jordan

Antitumor drugs of the vinca alkaloid and taxane classes function by suppressing the dynamics of microtubules in spindles, blocking cell division at metaphase. The drugs bind to various sites on the tubulin dimer and at different positions within the microtubule, suggesting that there are many unexplored targets for the design of novel drugs of this type.


Biochemistry | 2010

Eribulin Binds at Microtubule Ends to a Single Site on Tubulin to Suppress Dynamic Instability

Jennifer A. Smith; Leslie Wilson; Olga Azarenko; Xiaojie Zhu; Bryan M. Lewis; Bruce A. Littlefield; Mary Ann Jordan

Eribulin mesylate (E7389), a synthetic analogue of the marine natural product halichondrin B, is in phase III clinical trials for the treatment of cancer. Eribulin targets microtubules, suppressing dynamic instability at microtubule plus ends through an inhibition of microtubule growth with little or no effect on shortening [Jordan, M. A., et al. (2005) Mol. Cancer Ther. 4, 1086-1095]. Using [(3)H]eribulin, we found that eribulin binds soluble tubulin at a single site; however, this binding is complex with an overall K(d) of 46 microM, but also showing a real or apparent very high affinity (K(d) = 0.4 microM) for a subset of 25% of the tubulin. Eribulin also binds microtubules with a maximum stoichiometry of 14.7 +/- 1.3 molecules per microtubule (K(d) = 3.5 microM), strongly suggesting the presence of a relatively high-affinity binding site at microtubule ends. At 100 nM, the concentration that inhibits microtubule plus end growth by 50%, we found that one molecule of eribulin is bound per two microtubules, indicating that the binding of a single eribulin molecule at a microtubule end can potently inhibit its growth. Eribulin does not suppress dynamic instability at microtubule minus ends. Preincubation of microtubules with 2 or 4 microM vinblastine induced additional lower-affinity eribulin binding sites, most likely at splayed microtubule ends. Overall, our results indicate that eribulin binds with high affinity to microtubule plus ends and thereby suppresses dynamic instability.


Molecular Cancer Therapeutics | 2008

Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase

Tatiana Okouneva; Olga Azarenko; Leslie Wilson; Bruce A. Littlefield; Mary Ann Jordan

Eribulin (E7389), a synthetic analogue of halichondrin B in phase III clinical trials for breast cancer, binds to tubulin and microtubules. At low concentrations, it suppresses the growth phase of microtubule dynamic instability in interphase cells, arrests mitosis, and induces apoptosis, suggesting that suppression of spindle microtubule dynamics induces mitotic arrest. To further test this hypothesis, we measured the effects of eribulin on dynamics of centromeres and their attached kinetochore microtubules by time-lapse confocal microscopy in living mitotic U-2 OS human osteosarcoma cells. Green fluorescent protein–labeled centromere-binding protein B marked centromeres and kinetochore-microtubule plus-ends. In control cells, sister chromatid centromere pairs alternated under tension between increasing and decreasing separation (stretching and relaxing). Eribulin suppressed centromere dynamics at concentrations that arrest mitosis. At 60 nmol/L eribulin (2 × mitotic IC50), the relaxation rate was suppressed 21%, the time spent paused increased 67%, and dynamicity decreased 35% (but without reduction in mean centromere separation), indicating that eribulin decreased normal microtubule-dependent spindle tension at the kinetochores, preventing the signal for mitotic checkpoint passage. We also examined a more potent, but in tumors less efficacious antiproliferative halichondrin derivative, ER-076349. At 2 × IC50 (4 nmol/L), mitotic arrest also occurred in concert with suppressed centromere dynamics. Although media IC50 values differed 15-fold between the two compounds, the intracellular concentrations were similar, indicating more extensive relative uptake of ER-076349 into cells compared with eribulin. The strong correlation between suppression of kinetochore-microtubule dynamics and mitotic arrest indicates that the primary mechanism by which eribulin blocks mitosis is suppression of spindle microtubule dynamics. [Mol Cancer Ther 2008;7(7):2003–11]

Collaboration


Dive into the Mary Ann Jordan's collaboration.

Top Co-Authors

Avatar

Leslie Wilson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Azarenko

University of California

View shared research outputs
Top Co-Authors

Avatar

Kathy Kamath

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard F. Ludueña

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara S. Slusher

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge