Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary-Anne Hartley is active.

Publication


Featured researches published by Mary-Anne Hartley.


Frontiers in Cellular and Infection Microbiology | 2012

Leishmania RNA virus: when the host pays the toll

Mary-Anne Hartley; Catherine Ronet; Haroun Zangger; Stephen M. Beverley; Nicolas Fasel

The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic “metastatic factors” or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.


PLOS Neglected Tropical Diseases | 2013

Detection of Leishmania RNA Virus in Leishmania Parasites

Haroun Zangger; Catherine Ronet; Chantal Desponds; F. Matthew Kuhlmann; John Robinson; Mary-Anne Hartley; Florence Prevel; Patrik Castiglioni; Francine Pratlong; Patrick Bastien; Norbert Müller; Laurent Philippe Simon Parmentier; Nancy G. Saravia; Stephen M. Beverley; Nicolas Fasel

Background Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. Methodology/Principal Findings This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. Conclusions/Significance We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.


Trends in Parasitology | 2014

The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis

Mary-Anne Hartley; Stefan K. Drexler; Catherine Ronet; Stephen M. Beverley; Nicolas Fasel

Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system.


The Journal of Infectious Diseases | 2016

Presence of Leishmania RNA Virus 1 in Leishmania guyanensis Increases the Risk of First-Line Treatment Failure and Symptomatic Relapse

Eliane Bourreau; Marine Ginouves; Ghislaine Prévot; Mary-Anne Hartley; Jean-Pierre Gangneux; Florence Robert-Gangneux; Julie Dufour; D. Sainte-Marie; Antoine Bertolotti; Francine Pratlong; Ricardo Martin; Frédéric Schütz; Pierre Couppié; Nicolas Fasel; Catherine Ronet

Treatment failure and symptomatic relapse are major concerns in American tegumentary leishmaniasis (TL). Such complications are seen frequently in Leishmania guyanensis infections, in which patients respond variously to first-line antileishmanials and are more prone to develop chronic cutaneous leishmaniasis. The factors underlying this pathology, however, are unknown. Recently, we reported that a double-stranded RNA virus, Leishmania RNA virus 1 (LRV1), nested within L. guyanensis parasites is able to exacerbate experimental murine leishmaniasis by inducing a hyperinflammatory response. This report investigates the prevalence of LRV1 in human L. guyanensis infection and its effect on treatment efficacy, as well as its correlation to symptomatic relapses after the completion of first-line treatment. In our cohort of 75 patients with a diagnosis of primary localized American TL, the prevalence of LRV1-positive L. guyanensis infection was elevated to 58%. All patients infected with LRV1-negative L. guyanensis were cured after 1 dose (22 of 31 [71%]) or 2 doses (31 of 31 [100%]) of pentamidine. In contrast, 12 of 44 LRV1-positive patients (27%) presented with persistent infection and symptomatic relapse that required extended therapy and the use of second-line drugs. Finally, LRV1 presence was associated with a significant increase in levels of intra-lesional inflammatory markers. In conclusion, LRV1 status in L. guyanensis infection is significantly predictive (P = .0009) of first-line treatment failure and symptomatic relapse and has the potential to guide therapeutic choices in American TL.


Clinical Microbiology and Infection | 2013

The therapeutic potential of immune cross-talk in leishmaniasis

Mary-Anne Hartley; Kid Kohl; Catherine Ronet; Nicolas Fasel

Veterans of infection, Leishmania parasites have been plaguing mammals for centuries, causing a morbidity toll second only to that of malaria as the most devastating protozoan parasitic disease in the world. Cutaneous leishmaniasis (CL) is, by far, the most prevalent form of the disease, with symptoms ranging from a single self-healing lesion to chronic metastatic leishmaniasis (ML). In an increasingly immunocompromised population, complicated CL is becoming a more likely outcome, characterized by severely inflamed, destructive lesions that are often refractory to current treatment. This is perhaps because our ageing arsenal of variably effective antileishmanial drugs may be directly or indirectly immunomodulatory and may thus have variable effects in each type and stage of CL. Indeed, widely differing immune biases are created by the various species of Leishmania, and these immunological watersheds are further shifted by extrinsic disturbances in immune homeostasis. For example, we recently showed that a naturally occurring RNA virus (Leishmania RNA virus (LRV)) within some Leishmania parasites creates hyperinflammatory cross-talk, which can predispose to ML: a case of immunological misfire that may require a different approach to immunotherapy, whereby treatments are tailored to underlying immune biases. Understanding the intersecting immune pathways of leishmaniasis and its co-infections will enable us to identify new drug targets, and thereby design therapeutic strategies that work by untangling the immunological cross-wires of pathogenic cross-talk.


PLOS Pathogens | 2016

Leishmaniavirus-Dependent Metastatic Leishmaniasis Is Prevented by Blocking IL-17A.

Mary-Anne Hartley; Eliane Bourreau; Matteo Rossi; Patrik Castiglioni; Remzi Onur Eren; Florence Prevel; Pierre Couppié; Suzanne M. Hickerson; Pascal Launois; Stephen M. Beverley; Catherine Ronet; Nicolas Fasel

Cutaneous leishmaniasis has various outcomes, ranging from self-healing reddened papules to extensive open ulcerations that metastasise to secondary sites and are often resistant to standard therapies. In the case of L. guyanensis (L.g), about 5–10% of all infections result in metastatic complications. We recently showed that a cytoplasmic virus within L.g parasites (LRV1) is able to act as a potent innate immunogen, worsening disease outcome in a murine model. In this study, we investigated the immunophenotype of human patients infected by L.g and found a significant association between the inflammatory cytokine IL-17A, the presence of LRV1 and disease chronicity. Further, IL-17A was inversely correlated to the protective cytokine IFN-γ. These findings were experimentally corroborated in our murine model, where IL-17A produced in LRV1+ L.g infection contributed to parasite virulence and dissemination in the absence of IFN-γ. Additionally, IL-17A inhibition in mice using digoxin or SR1001, showed therapeutic promise in limiting parasite virulence. Thus, this murine model of LRV1-dependent infectious metastasis validated markers of disease chronicity in humans and elucidated the immunologic mechanism for the dissemination of Leishmania parasites to secondary sites. Moreover, it confirms the prognostic value of LRV1 and IL-17A detection to prevent metastatic leishmaniasis in human patients.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis

Matteo Rossi; Patrik Castiglioni; Mary-Anne Hartley; Remzi Onur Eren; Florence Prevel; Chantal Desponds; Daniel T. Utzschneider; Dietmar Zehn; Maria Grazia Cusi; F. Matthew Kuhlmann; Stephen M. Beverley; Catherine Ronet; Nicolas Fasel

Significance Infection with Leishmania (Viannia) parasites can have different manifestations, ranging from localized cutaneous to disseminated and mucocutaneous leishmaniasis, that are prone to relapse after the healing. We previously described the association of the endosymbiont Leishmania RNA virus 1 (LRV1) with increased disease severity. Here, we showed that coinfection with the lymphocytic choriomeningitis virus (LCMV) or Toscana virus exacerbated the outcome of Leishmania guyanensis-induced murine leishmaniasis, favoring parasite persistence and dissemination resulting in metastasis. Both endogenous and exogenous coinfections were dependent upon type I interferon responses. Strikingly, LCMV coinfection after the healing of leishmaniasis induced disease reactivation, overriding the protective adaptive immune response. Thus, viral infections may be a significant risk factor contributing to the pathological spectrum of human leishmaniasis. The presence of the endogenous Leishmania RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured Leishmania guyanensis (LgyLRV1−) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing (LgyLRV1+) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with L. guyanensis and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of L. guyanensis infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ–deficient mice promoted parasite dissemination to secondary sites, reproducing the LgyLRV1+ metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from L. guyanensis infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World Leishmania parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis.


American Journal of Tropical Medicine and Hygiene | 2016

Severe Cutaneous Leishmaniasis in a Human Immunodeficiency Virus Patient Coinfected with Leishmania braziliensis and Its Endosymbiotic Virus

Laurent Philippe Simon Parmentier; Alexia Cusini; Norbert Müller; Haroun Zangger; Mary-Anne Hartley; Chantal Desponds; Patrik Castiglioni; Patrick Dubach; Catherine Ronet; Stephen M. Beverley; Nicolas Fasel

Leishmania parasites cause a broad range of disease, with cutaneous afflictions being, by far, the most prevalent. Variations in disease severity and symptomatic spectrum are mostly associated to parasite species. One risk factor for the severity and emergence of leishmaniasis is immunosuppression, usually arising by coinfection of the patient with human immunodeficiency virus (HIV). Interestingly, several species of Leishmania have been shown to bear an endogenous cytoplasmic dsRNA virus (LRV) of the Totiviridae family, and recently we correlated the presence of LRV1 within Leishmania parasites to an exacerbation murine leishmaniasis and with an elevated frequency of drug treatment failures in humans. This raises the possibility of further exacerbation of leishmaniasis in the presence of both viruses, and here we report a case of cutaneous leishmaniasis caused by Leishmania braziliensis bearing LRV1 with aggressive pathogenesis in an HIV patient. LRV1 was isolated and partially sequenced from skin and nasal lesions. Genetic identity of both sequences reinforced the assumption that nasal parasites originate from primary skin lesions. Surprisingly, combined antiretroviral therapy did not impact the devolution of Leishmania infection. The Leishmania infection was successfully treated through administration of liposomal amphotericin B.


PLOS Neglected Tropical Diseases | 2017

Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid.

Patrik Castiglioni; Mary-Anne Hartley; Matteo Rossi; Florence Prevel; Chantal Desponds; Daniel T. Utzschneider; Remzi-Onur Eren; Haroun Zangger; Livia Brunner; Nicolas Collin; Dietmar Zehn; F. Matthew Kuhlmann; Stephen M. Beverley; Nicolas Fasel; Catherine Ronet

Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities.


PLOS Neglected Tropical Diseases | 2017

Predicting Ebola Severity: A Clinical Prioritization Score for Ebola Virus Disease

Mary-Anne Hartley; Alyssa J. Young; Anh-Minh Tran; Harry Henry Okoni-Williams; Mohamed Suma; Brooke Mancuso; Ahmed Al-Dikhari; Mohamed Faouzi

Background Despite the notoriety of Ebola virus disease (EVD) as one of the world’s most deadly infections, EVD has a wide range of outcomes, where asymptomatic infection may be almost as common as fatality. With increasingly sensitive EVD diagnosis, there is a need for more accurate prognostic tools that objectively stratify clinical severity to better allocate limited resources and identify those most in need of intensive treatment. Methods/Principal Findings This retrospective cohort study analyses the clinical characteristics of 158 EVD(+) patients at the GOAL-Mathaska Ebola Treatment Centre, Sierra Leone. The prognostic potential of each characteristic was assessed and incorporated into a statistically weighted disease score. The mortality rate among EVD(+) patients was 60.8% and highest in those aged <5 or >25 years (p<0.05). Death was significantly associated with malaria co-infection (OR = 2.5, p = 0.01). However, this observation was abrogated after adjustment to Ebola viral load (p = 0.1), potentially indicating a pathologic synergy between the infections. Similarly, referral-time interacted with viral load, and adjustment revealed referral-time as a significant determinant of mortality, thus quantifying the benefits of early reporting as a 12% mortality risk reduction per day (p = 0.012). Disorientation was the strongest unadjusted predictor of death (OR = 13.1, p = 0.014) followed by hiccups, diarrhoea, conjunctivitis, dyspnoea and myalgia. Including these characteristics in multivariate prognostic scores, we obtained a 91% and 97% ability to discriminate death at or after triage respectively (area under ROC curve). Conclusions/Significance This study proposes highly predictive and easy-to-use prognostic tools, which stratify the risk of EVD mortality at or after EVD triage.

Collaboration


Dive into the Mary-Anne Hartley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Beverley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Matthew Kuhlmann

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge