Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Anne S. Melo is active.

Publication


Featured researches published by Mary Anne S. Melo.


Journal of Dental Research | 2012

Anti-biofilm Dentin Primer with Quaternary Ammonium and Silver Nanoparticles

L. Cheng; Ke Zhang; Mary Anne S. Melo; Michael D. Weir; Xuedong Zhou; Hockin H.K. Xu

Antibacterial bonding agents could combat recurrent caries at the tooth-composite margins. The objectives of this study were to develop novel antibacterial dentin primers containing quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effects on dentin bond strength and dental plaque microcosm biofilms for the first time. Scotchbond Multi-Purpose (“SBMP”) bonding agent was used. QADM and NAg were incorporated into SBMP primer, yielding 4 primers: SBMP primer (control), control + 10% QADM (mass), control + 0.05% NAg, and control + 10% QADM + 0.05% NAg. Human saliva was collected to grow microcosm biofilms. The NAg particle size (mean ± SD; n = 100) was 2.7 ± 0.6 nm. Dentin shear bond strengths (n = 10) with human third molars were approximately 30 MPa for all groups (p > 0.1). QADM-NAg-containing primer increased the bacteria inhibition zone by 9-fold, compared with control primer (p < 0.05). QADM-NAg-containing primer reduced lactic acid production and colony-forming units of total micro-organisms, total streptococci, and mutans streptococci by an order of magnitude. In conclusion, novel QADM-NAg-containing primers were strongly antibacterial without compromising dentin bond strength, and hence are promising to inhibit biofilms and secondary caries. The processing method of incorporating QADM and NAg together into the same primer produced the strongest antibacterial effect, which could have a wide applicability to other bonding systems.


Dental Materials | 2012

Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms

Ke Zhang; Mary Anne S. Melo; Lei Cheng; Michael D. Weir; Yuxing Bai; Hockin H.K. Xu

OBJECTIVE Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. METHODS Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). RESULTS Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35MPa (p>0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p<0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. SIGNIFICANCE Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems.


Dental Materials | 2013

Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate.

Mary Anne S. Melo; Lei Cheng; Ke Zhang; Michael D. Weir; Lidiany Karla Azevedo Rodrigues; Hockin H.K. Xu

OBJECTIVES Secondary caries is the main reason for restoration failure, and replacement of the failed restorations accounts for 50-70% of all restorations. Antibacterial adhesives could inhibit residual bacteria in tooth cavity and invading bacteria along the margins. Calcium (Ca) and phosphate (P) ion release could remineralize the lesions. The objectives of this study were to incorporate nanoparticles of silver (NAg) and nanoparticles of amorphous calcium phosphate (NACP) into adhesive for the first time, and to investigate the effects on dentin bond strength and plaque microcosm biofilms. METHODS Scotchbond multi-purpose adhesive was used as control. NAg were added into primer and adhesive at 0.1% by mass. NACP were mixed into adhesive at 10%, 20%, 30% and 40%. Microcosm biofilms were grown on disks with primer covering the adhesive on a composite. Biofilm metabolic activity, colony-forming units (CFU) and lactic acid were measured. RESULTS Human dentin shear bond strengths (n=10) ranged from 26 to 34 MPa; adding NAg and NACP into adhesive did not decrease the bond strength (p>0.1). SEM examination revealed resin tags from well-filled dentinal tubules. Numerous NACP infiltrated into the dentinal tubules. While NACP had little antibacterial effect, NAg in bonding agents greatly reduced the biofilm viability and metabolic activity, compared to the control (p<0.05). CFU for total microorganisms, total streptococci, and mutans streptococci on bonding agents with NAg were an order of magnitude less than those of the control. Lactic acid production by biofilms for groups containing NAg was 1/4 of that of the control. SIGNIFICANCE Dental plaque microcosm biofilm viability and acid production were greatly reduced on bonding agents containing NAg and NACP, without compromising dentin bond strength. The novel method of incorporating dual agents (remineralizing agent NACP and antibacterial agent NAg) may have wide applicability to other dental bonding systems.


Dental Materials | 2013

Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model.

Mary Anne S. Melo; Michael D. Weir; Lidiany Karla Azevedo Rodrigues; Hockin H.K. Xu

OBJECTIVES Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) in a human in situ model for the first time, and to determine colony-forming units (CFU) and Ca and P ion concentrations of biofilms on the composite restorations. METHODS NACP with a mean particle size of 116 nm were synthesized via a spray-drying technique. Two composites were fabricated: NACP nanocomposite, and control composite filled with glass particles. Twenty-five volunteers wore palatal devices containing bovine enamel slabs with cavities restored with NACP or control composite. After 14 days, the adherent biofilms were collected for analyses. Transverse microradiography determined the enamel mineral profiles at the margins, and the enamel mineral loss ΔZ was measured. RESULTS NACP nanocomposite released Ca and P ions and the release significantly increased at cariogenic low pH (p<0.05). Biofilms on NACP nanocomposite contained higher Ca (p=0.007) and P ions (p=0.005) than those of control (n=25). There was no significant difference in biofilm CFU between the two composites (p>0.1). Microradiographs showed typical subsurface lesions in enamel next to control composite, but much less lesion around NACP nanocomposite. Enamel mineral loss ΔZ (mean±sd; n=25) around NACP nanocomposite was 13.8±9.3 μm, much less than 33.5±19.0 μm of the control (p=0.001). SIGNIFICANCE Novel NACP nanocomposite substantially reduced caries formation in a human in situ model for the first time. Enamel mineral loss at the margins around NACP nanocomposite was less than half of the mineral loss around control composite. Therefore, the Ca and P ion-releasing NACP nanocomposite is promising for caries-inhibiting restorations.


Trends in Biotechnology | 2013

Nanotechnology-based restorative materials for dental caries management

Mary Anne S. Melo; Sarah Florindo de Figueiredo Guedes; Hockin H.K. Xu; Lidiany Karla Azevedo Rodrigues

Nanotechnology has been applied to dental materials as an innovative concept for the development of materials with better properties and anticaries potential. In this review we discuss the current progress and future applications of functional nanoparticles incorporated in dental restorative materials as useful strategies to dental caries management. We also overview proposed antimicrobial and remineralizing mechanisms. Nanomaterials have great potential to decrease biofilm accumulation, inhibit the demineralization process, to be used for remineralizing tooth structure, and to combat caries-related bacteria. These results are encouraging and open the doors to future clinical studies that will allow the therapeutic value of nanotechnology-based restorative materials to be established.


Journal of Biomedical Materials Research Part B | 2013

Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles

Mary Anne S. Melo; Lei Cheng; Michael D. Weir; Ru-Ching Hsia; Lidiany Karla Azevedo Rodrigues; Hockin H.K. Xu

Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50%-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1) incorporate nanoparticles of silver (NAg), quaternary ammonium dimethacrylate (QADM), and nanoparticles of amorphous calcium phosphate (NACP) into bonding agent; and (2) investigate their effects on dentin bonding and microcosm biofilms. An experimental primer was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with bisphenol-A-glycerolate dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA). NAg was incorporated into primer at 0.1 wt %. The adhesive contained 0.1% NAg and 10% QADM, and 0%-40% NACP. Incorporating NAg into primer and NAg-QADM-NACP into adhesive did not adversely affect dentin bond strength (p > 0.1). Scanning electron microscopy showed numerous resin tags, and transmission electron microscopy revealed NAg and NACP in dentinal tubules. Viability of human saliva microcosm biofilms on primer/adhesive/composite disks was substantially reduced via NAg and QADM. Metabolic activity, lactic acid, and colony-forming units of biofilms were much lower on the new bonding agents than control (p < 0.05). In conclusion, novel dental bonding agents containing NAg, QADM, and NACP were developed with the potential to kill residual bacteria in the tooth cavity and inhibit the invading bacteria along tooth-restoration margins, with NACP to remineralize tooth lesions. The novel method of combining antibacterial agents (NAg and QADM) with remineralizing agent (NACP) may have wide applicability to other adhesives for caries inhibition.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries

Lei Cheng; Ke Zhang; Michael D. Weir; Mary Anne S. Melo; Xuedong Zhou; Hockin H.K. Xu

Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.


Journal of Dentistry | 2015

Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles.

Junling Wu; Michael D. Weir; Mary Anne S. Melo; Hockin H.K. Xu

OBJECTIVES Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. METHODS Microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid. Composite contained 20 mass% of NACP and 35% glass fillers. In addition, composite contained 0%, 2.5%, 5%, 7.5%, or 10% of microcapsules. A single edge V-notched beam method measured fracture toughness (KIC) and self-healing efficiency. A dental plaque microcosm biofilm model was used to test the antibacterial properties. RESULTS Incorporation of microcapsules up to 7.5% into the composite did not adversely affect the mechanical properties (p > 0.1). Successful self-healing was achieved, with KIC recovery of 65-81% (mean ± sd; n = 6) to regain the load-bearing capability after composite fracture. The self-healing DMAHDM-NACP composite displayed a strong antibacterial potency, inhibiting biofilm viability and lactic acid production, and reducing colony-forming units by 3-4 orders of magnitude, compared to control composite without DMAHDM. CONCLUSIONS A dental composite was developed with triple benefits of self-healing after fracture, antibacterial activity, and remineralization capability for the first time. CLINICAL SIGNIFICANCE The self-healing, antibacterial and remineralizing composite may be promising for tooth cavity restorations to combat bulk fracture and secondary caries. The method of using triple agents (self-healing microcapsules, DMAHDM, and NACP) may have wide applicability to other dental composites, adhesives, sealants and cements.


Journal of Dentistry | 2014

Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate

Mary Anne S. Melo; Junling Wu; Michael D. Weir; Hockin H.K. Xu

OBJECTIVES Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on microcosm biofilm response and enamel bond strength. METHODS DMADDM, a recently-synthetized antibacterial monomer, was incorporated into orthodontic cement at 0%, 1.5%, 3% and 5% mass fractions. Bond strength of brackets to enamel was measured. A microcosm biofilm model was used to measure metabolic activity, lactic acid production, and colony-forming units (CFU) on orthodontic cements. RESULTS Shear bond strength was not reduced at 3% DAMDDM (p > 0.1), but was slightly reduced at 5% DMADDM, compared to 0% DMADDM. Biofilm viability was substantially inhibited when in contact with orthodontic cement containing 3% DMADDM. Biofilm metabolic activity, lactic acid production, and CFU were much lower on orthodontic cement containing DMADDM than control cement (p < 0.05). CONCLUSIONS Therefore, the novel antibacterial orthodontic cement containing 3% DMADDM inhibited oral biofilms without compromising the enamel bond strength, and is promising to reduce or eliminate demineralization in enamel around orthodontic brackets.


Journal of Dentistry | 2015

Protein-repellent and antibacterial dental composite to inhibit biofilms and caries

Ning Zhang; Jianfeng Ma; Mary Anne S. Melo; Michael D. Weir; Yuxing Bai; Hockin H.K. Xu

OBJECTIVES Biofilm acids contribute to secondary caries, which is a main reason for dental restoration failures. The objectives of this study were to: (1) develop a protein-repellent and antibacterial composite, and (2) investigate the effects of combining 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM) on composite mechanical properties and biofilm response for the first time. METHODS MPC, DMAHDM and glass particles were mixed into a dental resin composite. Mechanical properties were measured in three-point flexure. Protein adsorption onto the composites was measured by a micro bicinchoninic acid method. A human saliva microcosm model was used to grow biofilms on composites. Colony-forming unit (CFU) counts, live/dead assay, metabolic activity, and lactic acid production of biofilms were determined. RESULTS Incorporation of 3% MPC and 1.5% DMAHDM into composite achieved protein-repellent and antibacterial capabilities without compromising the mechanical properties. Composite with 3% MPC+1.5% DMAHDM had protein adsorption that was 1/10 that of a commercial composite (p<0.05). The composite with 3% MPC+1.5% DMAHDM had much greater reduction in biofilm growth than using MPC or DMAHDM alone (p<0.05). Biofilm CFU counts on composite with 3% MPC+1.5% DMAHDM were more than three orders of magnitude lower than that of commercial control. CONCLUSIONS Dental composite with a combination of strong protein-repellent and antibacterial capabilities was developed for the first time. Composite containing MPC and DMAHDM greatly reduced biofilm growth and lactic acid production, without compromising mechanical properties of the composite. CLINICAL SIGNIFICANCE Novel composite with MPC and DMAHDM greatly reduced biofilm activity and is promising to inhibit secondary caries. The dual agents of MPC plus DMAHDM may have wide applicability to other dental materials.

Collaboration


Dive into the Mary Anne S. Melo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuxing Bai

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Ning Zhang

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junling Wu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge