Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Armanios is active.

Publication


Featured researches published by Mary Armanios.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Short telomeres are a risk factor for idiopathic pulmonary fibrosis

Jonathan K. Alder; Julian J.-L. Chen; Lisa H. Lancaster; Sonye K. Danoff; Shu Chih Su; Joy D. Cogan; Irma Vulto; Mingyi Xie; Xiaodong Qi; Rubin M. Tuder; John A. Phillips; Peter M. Lansdorp; James E. Loyd; Mary Armanios

Idiopathic interstitial pneumonias (IIPs) have a progressive and often fatal course, and their enigmatic etiology has complicated approaches to effective therapies. Idiopathic pulmonary fibrosis (IPF) is the most common of IIPs and shares with IIPs an increased incidence with age and unexplained scarring in the lung. Short telomeres limit tissue renewal capacity in the lung and germ-line mutations in telomerase components, hTERT and hTR, underlie inheritance in a subset of families with IPF. To examine the hypothesis that short telomeres contribute to disease risk in sporadic IIPs, we recruited patients who have no family history and examined telomere length in leukocytes and in alveolar cells. To screen for mutations, we sequenced hTERT and hTR. We also reviewed the cases for features of a telomere syndrome. IIP patients had shorter leukocyte telomeres than age-matched controls (P < 0.0001). In a subset (10%), IIP patients had telomere lengths below the first percentile for their age. Similar to familial cases with mutations, IPF patients had short telomeres in alveolar epithelial cells (P < 0.0001). Although telomerase mutations were rare, detected in 1 of 100 patients, we identified a cluster of individuals (3%) with IPF and cryptogenic liver cirrhosis, another feature of a telomere syndrome. Short telomeres are thus a signature in IIPs and likely play a role in their age-related onset. The clustering of cryptogenic liver cirrhosis with IPF suggests that the telomere shortening we identify has consequences and can contribute to what appears clinically as idiopathic progressive organ failure in the lung and the liver.


Annual Review of Genomics and Human Genetics | 2009

Syndromes of Telomere Shortening

Mary Armanios

Telomeres and telomerase were initially discovered in pursuit of questions about how the ends of chromosomes are maintained. The implications of these discoveries to age-related disease have emerged in recent years with the recognition of a group of telomere-mediated syndromes. Telomere-mediated disease was initially identified in the context of dyskeratosis congenita, a rare syndrome of premature aging. More recently, mutations in telomerase components were identified in adults with idiopathic pulmonary fibrosis. These findings have revealed that the spectrum of telomere-mediated disease is broad and includes clinical presentations in both children and adults. We have previously proposed that these disorders be collectively considered as syndromes of telomere shortening. Here, the spectrum of these disorders and the unique telomere genetics that underlies them are reviewed. I also propose broader clinical criteria for defining telomere-mediated syndromes outside of dyskeratosis congenita, with the goal of facilitating their diagnosis and highlighting their pathophysiology.


Cell | 2005

Short Telomeres, even in the Presence of Telomerase, Limit Tissue Renewal Capacity

Ling Yang Hao; Mary Armanios; Margaret A. Strong; Baktiar O. Karim; David M. Feldser; David L. Huso; Carol W. Greider

Autosomal-dominant dyskeratosis congenita is associated with heterozygous mutations in telomerase. To examine the dosage effect of telomerase, we generated a line of mTR+/- mice on the CAST/EiJ background, which has short telomeres. Interbreeding of heterozygotes resulted in progressive telomere shortening, indicating that limiting telomerase compromises telomere maintenance. In later-generation heterozygotes, we observed a decrease in tissue renewal capacity in the bone marrow, intestines, and testes that resembled defects seen in dyskeratosis congenita patients. The progressive worsening of disease with decreasing telomere length suggests that short telomeres, not telomerase level, cause stem cell failure. Further, wild-type mice derived from the late-generation heterozygous parents, termed wt*, also had short telomeres and displayed a germ cell defect, indicating that telomere length determines these phenotypes. We propose that short telomeres in mice that have normal telomerase levels can cause an occult form of genetic disease.


Journal of Clinical Investigation | 2013

Telomeres and age-related disease: How telomere biology informs clinical paradigms

Mary Armanios

Telomere length shortens with age and predicts the onset of replicative senescence. Recently, short telomeres have been linked to the etiology of degenerative diseases such as idiopathic pulmonary fibrosis, bone marrow failure, and cryptogenic liver cirrhosis. These disorders have recognizable clinical manifestations, and the telomere defect explains their genetics and informs the approach to their treatment. Here, I review how telomere biology has become intimately connected to clinical paradigms both for understanding pathophysiology and for individualizing therapy decisions. I also critically examine nuances of interpreting telomere length measurement in clinical studies.


American Journal of Human Genetics | 2009

Short Telomeres are Sufficient to Cause the Degenerative Defects Associated with Aging

Mary Armanios; Jonathan K. Alder; Erin M. Parry; Baktiar O. Karim; Margaret A. Strong; Carol W. Greider

Telomerase function is critical for telomere maintenance. Mutations in telomerase components lead to telomere shortening and progressive bone marrow failure in the premature aging syndrome dyskeratosis congenita. Short telomeres are also acquired with aging, yet the role that they play in mediating age-related disease is not fully known. We generated wild-type mice that have short telomeres. In these mice, we identified hematopoietic and immune defects that resembled those present in dyskeratosis congenita patients. When mice with short telomeres were interbred, telomere length was only incrementally restored, and even several generations later, wild-type mice with short telomeres still displayed degenerative defects. Our findings implicate telomere length as a unique heritable trait that, when short, is sufficient to mediate the degenerative defects of aging, even when telomerase is wild-type.


American Journal of Respiratory and Critical Care Medicine | 2011

Telomere Length Is a Determinant of Emphysema Susceptibility

Jonathan K. Alder; Nini Guo; Frant Kembou; Erin M. Parry; Collin J. Anderson; Amany I. Gorgy; Michael Walsh; Thomas E. Sussan; Shyam Biswal; Wayne Mitzner; Rubin M. Tuder; Mary Armanios

RATIONALE Germline mutations in the enzyme telomerase cause telomere shortening, and have their most common clinical manifestation in age-related lung disease that manifests as idiopathic pulmonary fibrosis. Short telomeres are also a unique heritable trait that is acquired with age. OBJECTIVES We sought to understand the mechanisms by which telomerase deficiency contributes to lung disease. METHODS We studied telomerase null mice with short telomeres. MEASUREMENTS AND MAIN RESULTS Although they have no baseline histologic defects, when mice with short telomeres are exposed to chronic cigarette smoke, in contrast with controls, they develop emphysematous air space enlargement. The emphysema susceptibility did not depend on circulating cell genotype, because mice with short telomeres developed emphysema even when transplanted with wild-type bone marrow. In lung epithelium, cigarette smoke exposure caused additive DNA damage to telomere dysfunction, which limited their proliferative recovery, and coincided with a failure to down-regulate p21, a mediator of cellular senescence, and we show here, a determinant of alveolar epithelial cell cycle progression. We also report early onset of emphysema, in addition to pulmonary fibrosis, in a family with a germline deletion in the Box H domain of the RNA component of telomerase. CONCLUSIONS Our data indicate that short telomeres lower the threshold of cigarette smoke-induced damage, and implicate telomere length as a genetic susceptibility factor in emphysema, potentially contributing to its age-related onset in humans.


Mutation Research | 2012

Telomerase and idiopathic pulmonary fibrosis

Mary Armanios

Idiopathic pulmonary fibrosis (IPF) is the most common manifestation of telomere-mediated disorders. Germline mutations in the essential telomerase genes, hTERT and hTR, are the causal genetic defect in up to one-sixth of pulmonary fibrosis families. The presence of telomerase mutations in this subset is significant for clinical decisions as affected individuals can develop extra-pulmonary complications related to telomere shortening such as bone marrow failure and cryptogenic liver cirrhosis. There is also evidence that IPF is an ancestral manifestation of autosomal dominant telomere syndromes where, with successive generations, the disease evolves from pulmonary fibrosis into a bone marrow failure-predominant disorder, defining a unique form of genetic anticipation. Here I review the significance of telomere defects for understanding the genetics, disease patterns and pathophysiology of IPF. The importance of this diagnosis for patient care decisions will also be discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Telomere dysfunction causes alveolar stem cell failure

Jonathan K. Alder; Christina E. Barkauskas; Nathachit Limjunyawong; Susan E. Stanley; Frant Kembou; Rubin M. Tuder; Brigid L.M. Hogan; Wayne Mitzner; Mary Armanios

Significance Idiopathic pulmonary fibrosis and emphysema are leading causes of mortality, but there are no effective therapies. Mutations in telomerase are the most common identifiable risk factor for idiopathic pulmonary fibrosis. They also predispose to severe emphysema in smokers, occurring at a frequency similar to α-1 antitrypsin deficiency. The work shown here points to alveolar stem cell senescence as a driver of these pathologies. Epithelial stem cell failure was associated with secondary inflammatory recruitment and exquisite susceptibility to injury from “second hits.” The findings suggest that efforts to reverse the stem cell failure state directly, rather than its secondary consequences, may be an effective therapy approach in telomere-mediated lung disease. Telomere syndromes have their most common manifestation in lung disease that is recognized as idiopathic pulmonary fibrosis and emphysema. In both conditions, there is loss of alveolar integrity, but the underlying mechanisms are not known. We tested the capacity of alveolar epithelial and stromal cells from mice with short telomeres to support alveolar organoid colony formation and found that type 2 alveolar epithelial cells (AEC2s), the stem cell-containing population, were limiting. When telomere dysfunction was induced in adult AEC2s by conditional deletion of the shelterin component telomeric repeat-binding factor 2, cells survived but remained dormant and showed all the hallmarks of cellular senescence. Telomere dysfunction in AEC2s triggered an immune response, and this was associated with AEC2-derived up-regulation of cytokine signaling pathways that are known to provoke inflammation in the lung. Mice uniformly died after challenge with bleomycin, underscoring an essential role for telomere function in AEC2s for alveolar repair. Our data show that alveoloar progenitor senescence is sufficient to recapitulate the regenerative defects, inflammatory responses, and susceptibility to injury that are characteristic of telomere-mediated lung disease. They suggest alveolar stem cell failure is a driver of telomere-mediated lung disease and that efforts to reverse it may be clinically beneficial.


Blood | 2011

Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase

Erin M. Parry; Jonathan K. Alder; Xiaodong Qi; Julian J.-L. Chen; Mary Armanios

Mutations in the essential telomerase components hTERT and hTR cause dyskeratosis congenita, a bone marrow failure syndrome characterized by mucocutaneous features. Some (~ 3%) sporadic aplastic anemia (AA) and idiopathic pulmonary fibrosis cases also carry mutations in hTERT and hTR. Even though it can affect clinical outcome, because the mutation frequency is rare, genetic testing is not standard. We examined whether the cooccurrence of bone marrow failure and pulmonary fibrosis in the same individual or family enriches for the presence of a telomerase mutation. Ten consecutive individuals with a total of 36 family members who fulfilled these criteria carried a germline mutant telomerase gene (100%). The mean age of onset for individuals with AA was significantly younger than that for those with pulmonary fibrosis (14 vs 51; P < .0001). Families displayed autosomal dominant inheritance and there was an evolving pattern of genetic anticipation, with the older generation primarily affected by pulmonary fibrosis and successive generations by bone marrow failure. The cooccurrence of AA and pulmonary fibrosis in a single patient or family is highly predictive for the presence of a germline telomerase defect. This diagnosis affects the choice of bone marrow transplantation preparative regimen and can prevent morbidity.


European Respiratory Journal | 2014

Lung transplantation in telomerase mutation carriers with pulmonary fibrosis

Leann L. Silhan; Pali D. Shah; D.C. Chambers; Laurie D. Snyder; Gerdt C. Riise; Christa L. Wagner; Eva Hellström-Lindberg; Jonathan B. Orens; Juliette F. Mewton; Sonye K. Danoff; Murat O. Arcasoy; Mary Armanios

Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the USA, Australia and Sweden. The median age at transplant was 52 years. Seven recipients are alive with a median follow-up of 1.9 years (range 6 months to 9 years); one died at 10 months. The most common complications were haematological, with recipients requiring platelet transfusion support (88%) and adjustment of immunosuppressives (100%). Four recipients (50%) required dialysis for tubular injury and calcineurin inhibitor toxicity. These complications occurred at significantly higher rates relative to historic series (p<0.0001). Our observations support the feasibility of lung transplantation in telomerase mutation carriers; however, severe post-transplant complications reflecting the syndromic nature of their disease appear to occur at higher rates. While these findings need to be expanded to other cohorts, caution should be exercised when approaching the transplant evaluation and management of this subset of pulmonary fibrosis patients. Telomerase mutation carriers with IPF may be prone to complications from their underlying telomere syndrome after LTx http://ow.ly/wmy6P

Collaboration


Dive into the Mary Armanios's collaboration.

Top Co-Authors

Avatar

Jonathan K. Alder

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Susan E. Stanley

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Erin M. Parry

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Carol W. Greider

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Vidya Sagar Hanumanthu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dustin L. Gable

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy E. DeZern

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge