Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary C. Kosciuk is active.

Publication


Featured researches published by Mary C. Kosciuk.


Brain Research | 2007

Aβ peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons

Peter M. Clifford; Shabnam Zarrabi; Gilbert Siu; Kristin Kinsler; Mary C. Kosciuk; Venkateswar Venkataraman; Michael R. D'Andrea; Steven Dinsmore; Robert G. Nagele

We have investigated the possibility that soluble, blood-borne amyloid beta (Abeta) peptides can cross a defective blood-brain barrier (BBB) and interact with neurons in the brain. Immunohistochemical analyses revealed extravasated plasma components, including Abeta42 in 19 of 21 AD brains, but in only 3 of 13 age-matched control brains, suggesting that a defective BBB is common in AD. To more directly test whether blood-borne Abeta peptides can cross a defective BBB, we tracked the fate of fluorescein isothiocyanate (FITC)-labeled Abeta42 and Abeta40 introduced via tail vein injection into mice with a BBB rendered permeable by treatment with pertussis toxin. Both Abeta40 and Abeta42 readily crossed the permeabilized BBB and bound selectively to certain neuronal subtypes, but not glial cells. By 48 h post-injection, Abeta42-positive neurons were widespread in the brain. In the cerebral cortex, small fluorescent, Abeta42-positive granules were found in the perinuclear cytoplasm of pyramidal neurons, suggesting that these cells can internalize exogenous Abeta42. An intact BBB (saline-injected controls) blocked entry of blood-borne Abeta peptides into the brain. The neuronal subtype selectivity of Abeta42 and Abeta40 was most evident in mouse brains subjected to direct intracranial stereotaxic injection into the hippocampal region, thereby bypassing the BBB. Abeta40 was found to preferentially bind to a distinct subset of neurons positioned at the inner face of the dentate gyrus, whereas Abeta42 bound selectively to the population of large neurons in the hilus region of the dentate gyrus. Our results suggest that the blood may serve as a major, chronic source of soluble, exogenous Abeta peptides that can bind selectively to certain subtypes of neurons and accumulate within these cells.


PLOS ONE | 2013

Natural IgG Autoantibodies Are Abundant and Ubiquitous in Human Sera, and Their Number Is Influenced By Age, Gender, and Disease

Eric P. Nagele; Min Han; Nimish K. Acharya; Cassandra DeMarshall; Mary C. Kosciuk; Robert G. Nagele

The presence of self-reactive IgG autoantibodies in human sera is largely thought to represent a breakdown in central tolerance and is typically regarded as a harbinger of autoimmune pathology. In the present study, immune-response profiling of human serum from 166 individuals via human protein microarrays demonstrates that IgG autoantibodies are abundant in all human serum, usually numbering in the thousands. These IgG autoantibodies bind to human antigens from organs and tissues all over the body and their serum diversity is strongly influenced by age, gender, and the presence of specific diseases. We also found that serum IgG autoantibody profiles are unique to an individual and remarkably stable over time. Similar profiles exist in rat and swine, suggesting conservation of this immunological feature among mammals. The number, diversity, and apparent evolutionary conservation of autoantibody profiles suggest that IgG autoantibodies have some important, as yet unrecognized, physiological function. We propose that IgG autoantibodies have evolved as an adaptive mechanism for debris-clearance, a function consistent with their apparent utility as diagnostic indicators of disease as already established for Alzheimer’s and Parkinson’s diseases.


Journal of Alzheimer's Disease | 2013

Diabetes and Hypercholesterolemia Increase Blood-Brain Barrier Permeability and Brain Amyloid Deposition: Beneficial Effects of the LpPLA2 Inhibitor Darapladib

Nimish K. Acharya; Eli C. Levin; Peter M. Clifford; Min Han; Ryan Tourtellotte; Dean Chamberlain; Michael Pollaro; Nicholas J. Coretti; Mary C. Kosciuk; Eric P. Nagele; Cassandra DeMarshall; Theresa A. Freeman; Yi Shi; Chenbing Guan; Colin H. Macphee; Robert L. Wilensky; Robert G. Nagele

Diabetes mellitus (DM) and hypercholesterolemia (HC) have emerged as major risk factors for Alzheimers disease, highlighting the importance of vascular health to normal brain functioning. Our previous study showed that DM and HC favor the development of advanced coronary atherosclerosis in a porcine model, and that treatment with darapladib, an inhibitor of lipoprotein-associated phospholipase A2, blocks atherosclerosis progression and improves animal alertness and activity levels. In the present study, we examined the effects of DM and HC on the permeability of the blood-brain barrier (BBB) using immunoglobulin G (IgG) as a biomarker. DMHC increased BBB permeability and the leak of microvascular IgG into the brain interstitium, which was bound preferentially to pyramidal neurons in the cerebral cortex. We also examined the effects of DMHC on the brain deposition of amyloid peptide (Aβ42), a well-known pathological feature of Alzheimers disease. Nearly all detectable Aβ42 was contained within cortical pyramidal neurons and DMHC increased the density of Aβ42-loaded neurons. Treatment of DMHC animals with darapladib reduced the amount of IgG-immunopositive material that leaked into the brain as well as the density of Aβ42-containing neurons. Overall, these results suggest that a prolonged state of DMHC may have chronic deleterious effects on the functional integrity of the BBB and that, in this DMHC pig model, darapladib reduces BBB permeability. Also, the preferential binding of IgG and coincident accumulation of Aβ42 in the same neurons suggests a mechanistic link between the leak of IgG through the BBB and intraneuronal deposition of Aβ42 in the brain.


Journal of Autoimmunity | 2012

Neuronal PAD4 expression and protein citrullination: Possible role in production of autoantibodies associated with neurodegenerative disease

Nimish K. Acharya; Eric P. Nagele; Min Han; Nicholas J. Coretti; Cassandra DeMarshall; Mary C. Kosciuk; Paul A. Boulos; Robert G. Nagele

Peptidyl arginine deiminases (PADs) catalyze a post-translational protein modification reaction called citrullination, where arginine is converted to citrulline. This modification has been linked to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA). More recently, several studies have suggested that Alzheimers disease (AD), a devastating neurodegenerative disorder, may have an autoimmune component. In the present study, we have investigated the possibility that expression of PADs and protein citrullination plays a role in the production of brain-reactive autoantibodies that may contribute to Alzheimers-related brain pathology. Here, we report the selective expression of the PAD isoforms, PAD2 and PAD4, in astrocytes and neurons, respectively, and the concomitant accumulation of citrullinated proteins within PAD4-expressing cells, including neurons of the hippocampus and cerebral cortex. Expression of PADs and citrullinated proteins is prominent in brain regions engaged in neurodegenerative changes typical for AD pathology. Furthermore, we also demonstrate that the pentatricopeptide repeat domain2 (PTCD2) protein, an antigen target of a prominent AD diagnostic autoantibody, is present in a citrullinated form in AD brains. Our results suggest that disease-associated neuronal loss results in the release of cellular contents, including citrullinated proteins, into the brain interstitium. We propose that these citrullinated proteins and their degradation fragments enter into the blood and lymphatic circulation, and some are capable of eliciting an immune response that results in the production of autoantibodies. The long-term and progressive nature of AD and other neurodegenerative diseases results in chronic exposure of the immune system to these citrullinated products and may drive the continual production of autoantibodies.


PLOS ONE | 2012

Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration

Jhon Alberto Ochoa-Alvarez; Harini Krishnan; Yongquan Shen; Nimish K. Acharya; Min Han; Dean E. McNulty; Hitoki Hasegawa; Toshinori Hyodo; Takeshi Senga; Jian Guo Geng; Mary C. Kosciuk; Seung Shick Shin; James S. Goydos; Dmitry Temiakov; Robert G. Nagele; Gary S. Goldberg

Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.


Journal of Alzheimer's Disease | 2011

Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-β(1-42) deposition.

Robert G. Nagele; Peter M. Clifford; Gilbert Siu; Eli C. Levin; Nimish K. Acharya; Min Han; Mary C. Kosciuk; Venkat Venkataraman; Semah Zavareh; Shabnam Zarrabi; Kristin Kinsler; Nikhil G. Thaker; Eric P. Nagele; Jacqueline Dash; Hoau Y. Wang; Andrew S. Levitas

Previous studies have reported immunoglobulin-positive neurons in Alzheimers disease (AD) brains, an observation indicative of blood-brain barrier (BBB) breakdown. Recently, we demonstrated the nearly ubiquitous presence of brain-reactive autoantibodies in human sera. The significance of these observations to AD pathology is unknown. Here, we show that IgG-immunopositive neurons are abundant in brain regions exhibiting AD pathology, including intraneuronal amyloid-β(42) (Aβ(42)) and amyloid plaques, and confirm by western analysis that brain-reactive autoantibodies are nearly ubiquitous in human serum. To investigate a possible interrelationship between neuronal antibody binding and Aβ pathology, we tested the effects of human serum autoantibodies on the intraneuronal deposition of soluble Aβ(42) peptide in adult mouse neurons in vitro (organotypic brain slice cultures). Binding of human autoantibodies to mouse neurons dramatically increased the rate and extent of intraneuronal Aβ(42) accumulation in the mouse cerebral cortex and hippocampus. Additionally, individual sera exhibited variable potency related to their capacity to enhance intraneuronal Aβ(42) peptide accumulation and immunolabel neurons in AD brain sections. Replacement of human sera with antibodies targeting abundant neuronal surface proteins resulted in a comparable enhancement of Aβ(42) accumulation in mouse neurons. Overall, results suggest that brain-reactive autoantibodies are ubiquitous in the blood and that a defective BBB allows these antibodies to access the brain interstitium, bind to neuronal surfaces and enhance intraneuronal deposition of Aβ(42) in AD brains. Thus, in the context of BBB compromise, brain-reactive autoantibodies may be an important risk factor for the initiation and/or progression of AD as well as other neurodegenerative diseases.


Brain Research | 2008

Α7 nicotinic acetylcholine receptor expression by vascular smooth muscle cells facilitates the deposition of Aβ peptides and promotes cerebrovascular amyloid angiopathy

Peter M. Clifford; Gilbert Siu; Mary C. Kosciuk; Eli C. Levin; Venkateswar Venkataraman; Michael R. D'Andrea; Robert G. Nagele

Deposition of beta-amyloid (Abeta) peptides in the walls of brain blood vessels, cerebral amyloid angiopathy (CAA), is common in patients with Alzheimers disease (AD). Previous studies have demonstrated Abeta peptide deposition among vascular smooth muscle cells (VSMCs), but the source of the Abeta and basis for its selective deposition in VSMCs are unknown. In the present study, we examined the deposition patterns of Abeta peptides, Abeta40 and Abeta42, within the cerebrovasculature of AD and control patients using single- and double-label immunohistochemistry. Abeta40 and Abeta42 were abundant in VSMCs, especially in leptomeningeal arteries and their initial cortical branches; in later-stage AD brains this pattern extended into the microvasculature. Abeta peptide deposition was linked to loss of VSMC viability. Perivascular leak clouds of Abeta-positive material were associated primarily with arterioles. By contrast, control brains possessed far fewer Abeta42- and Abeta40-immunopositive blood vessels, with perivascular leak clouds of Abeta-immunopositive material rarely observed. We also demonstrate that VSMCs in brain blood vessels express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), which has high binding affinity for Abeta peptides, especially Abeta42. These results suggest that the blood and blood-brain barrier permeability provide a major source of the Abeta peptides that gradually deposit in brain VSMCs, and the presence and abundance of the alpha7nAChR on VSMCs may facilitate the selective accumulation of Abeta peptides in these cells.


Brain Research | 2015

Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood−brain barrier permeability: Possible link to postoperative delirium and cognitive decline

Nimish K. Acharya; Eric L. Goldwaser; Martin M. Forsberg; George Godsey; Cristina A. Johnson; Abhirup Sarkar; Cassandra DeMarshall; Mary C. Kosciuk; Jacqueline M. Dash; Caitlin P. Hale; Douglas M. Leonard; Denah M. Appelt; Robert G. Nagele

A large percentage of patients subjected to general anesthesia at 65 years and older exhibit postoperative delirium (POD). Here, we test the hypothesis that inhaled anesthetics (IAs), such as Sevoflurane and Isoflurane, act directly on brain vascular endothelial cells (BVECs) to increase blood-brain barrier (BBB) permeability, thereby contributing to POD. Rats of young (3-5 months), middle (10-12 months) and old (17-19 months) ages were anesthetized with Sevoflurane or Isoflurane for 3h. After exposure, some were euthanized immediately; others were allowed to recover for 24h before sacrifice. Immunohistochemistry was employed to monitor the extent of BBB breach, and scanning electron microscopy (SEM) was used to examine changes in the luminal surfaces of BVECs. Quantitative immunohistochemistry revealed increased BBB permeability in older animals treated with Sevoflurane, but not Isoflurane. Extravasated immunoglobulin G showed selective affinity for pyramidal neurons. SEM demonstrated marked flattening of the luminal surfaces of BVECs in anesthetic-treated rats. Results suggest an aging-linked BBB compromise resulting from exposure to Sevoflurane. Changes in the luminal surface topology of BVECs indicate a direct effect on the plasma membrane, which may weaken or disrupt their BBB-associated tight junctions. Disruption of brain homeostasis due to plasma influx into the brain parenchyma and binding of plasma components (e.g., immunoglobulins) to neurons may contribute to POD. We propose that, in the elderly, exposure to some IAs can cause BBB compromise that disrupts brain homeostasis, perturbs neuronal function and thereby contributes to POD. If unresolved, this may progress to postoperative cognitive decline and later dementia.


Developmental Brain Research | 1989

Intrinsic and extrinsic factors collaborate to generate driving forces for neural tube formation in the chick: a study using morphometry and computerized three-dimensional reconstruction

Robert G. Nagele; Kevin T. Bush; Mary C. Kosciuk; Edward T. Hunter; Alan B. Steinberg; Hsin-Yi Lee

The formation of the neural tube, the rudiment of the entire central nervous system, is one of the earliest morphogenetic movements. The origin of the driving forces for this process remains uncertain, but recent studies suggest the involvement of both intrinsic and extrinsic factors. In the present study, we have used morphometry, analysis of stereopair photographs of whole embryos, and computerized three-dimensional reconstruction to investigate the factors which constitute the bulk of the driving forces for neural tube formation in the developing midbrain of Hamburger and Hamilton stages 5-9 chick embryos. Results support the notion that neural tube formation is driven by a coordinated interplay of intrinsic and extrinsic forces. Initial bending of the neural plate along the midline of the embryo and uplifting of the neural folds is accomplished primarily through the combined action of intrinsic forces (resulting from apical constriction of neuroepithelial cells) and extrinsic forces (mostly a passive consequence of head-fold formation). However, once in the uplifted position, curling over of neural folds and closure of the neural tube is driven largely by apical constriction-mediated (intrinsic) forces that are generated by cells in the midlateral walls of the forming neural tube.


The Journal of Neuroscience | 2009

Prenatal Cocaine Reduces AMPA Receptor Synaptic Expression through Hyperphosphorylation of the Synaptic Anchoring Protein GRIP

Kalindi Bakshi; Serena Gennaro; Christopher Y. Chan; Mary C. Kosciuk; JingJing Liu; Andres Stucky; Ekkehart Trenkner; Eitan Friedman; Robert G. Nagele; Hoau-Yan Wang

Prenatal cocaine exposure produces sustained neurobehavioral and brain synaptic changes closely resembling those of animals with defective AMPA receptors (AMPARs). We hypothesized that prenatal cocaine exposure attenuates AMPAR signaling by interfering with AMPAR synaptic targeting. AMPAR function is governed by receptor cycling on and off the synaptic membrane through its interaction with glutamate receptor-interacting protein (GRIP), a PDZ domain protein that is regulated by reversible phosphorylation. Our results show that prenatal cocaine exposure markedly reduces AMPAR synaptic targeting and attenuates AMPAR-mediated synaptic long-term depression in the frontal cortex of 21-d-old rats. This cocaine effect is the result of reduced GRIP–AMPAR interaction caused by persistent phosphorylation of GRIP by protein kinase C (PKC) and Src tyrosine kinase. These data support the restoration of AMPAR activation via suppressing excessive PKC-mediated GRIP phosphorylation as a novel therapeutic approach to treat the neurobehavioral consequences of prenatal cocaine.

Collaboration


Dive into the Mary C. Kosciuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Han

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter M. Clifford

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Eli C. Levin

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilbert Siu

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge