Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary C. Mullins is active.

Publication


Featured researches published by Mary C. Mullins.


Current Biology | 1994

Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate

Mary C. Mullins; Matthias Hammerschmidt; Pascal Haffter; Christiane Nüsslein-Volhard

BACKGROUND In Drosophila melanogaster and Caenorhabditis elegans, the elucidation of developmental mechanisms has relied primarily on the systematic induction and isolation of mutations in genes with specific functions in development. Such an approach has not yet been possible in a vertebrate species, owing to the difficulty of analyzing and keeping a sufficiently high number of mutagenized lines of animals. RESULTS We have developed the methods necessary to perform large-scale saturation screens for mutations affecting embryogenesis in the zebrafish, Danio (Brachydanio) rerio. Firstly, a new aquarium system was developed to raise and keep large numbers of strains of genetically different fish safely and with little maintenance care. Secondly, by placing adult male fish in water containing the chemical mutagen, ethylnitrosourea, we induced point mutations in premeiotic germ cells with a rate of one to three mutations per locus per 1,000 mutagenized haploid genomes. This rate, which is similar to the mutagenesis rates produced by ethylmethanesulfonate in Drosophila, was determined for alleles at four different pigmentation genes. Finally, in a pilot screen in which mutagenized fish were inbred for two generations and scored for embryonic mutants, we isolated 100 recessive mutations with phenotypes visible in the homozygous embryos. CONCLUSION The high rate of induction and recovery of point mutations, in addition to an efficient aquarium system to house large numbers of mutagenized lines, means that it is now possible to perform saturation mutagenesis screens in a vertebrate, similar to those done in invertebrates.


Development | 2003

Regulation of Msx genes by a Bmp gradient is essential for neural crest specification

Celeste Tríbulo; Manuel J. Aybar; Vu H. Nguyen; Mary C. Mullins; Roberto Mayor

There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest genetic cascade. In order to study the hierarchical relationship between msx1 and snail/slug we performed several rescue experiments using dominant negatives for these genes. The rescuing activity by snail and slug on neural crest development of the msx1 dominant negative, together with the inability of msx1 to rescue the dominant negatives of slug and snail strongly argue that msx1 is upstream of snail and slug in the genetic cascade that specifies the neural crest in the ectoderm. We propose a model where a gradient of Bmp activity specifies the expression of Msx genes in the neural folds, and that this expression is essential for the early specification of the neural crest.


Cell | 2002

Hop is an unusual homeobox gene that modulates cardiac development.

Fabian Chen; Hyun Kook; Rita K. Milewski; Aaron D. Gitler; Min Min Lu; Jun Li; Ronniel Nazarian; Robert W. Schnepp; Kuangyu Jen; Christine Biben; Greg Runke; Joel P. Mackay; Jiri Novotny; Robert J. Schwartz; Richard P. Harvey; Mary C. Mullins; Jonathan A. Epstein

Hop is a small, divergent homeodomain protein that lacks certain conserved residues required for DNA binding. Hop gene expression initiates early in cardiogenesis and continues in cardiomyocytes throughout embryonic and postnatal development. Genetic and biochemical data indicate that Hop functions directly downstream of Nkx2-5. Inactivation of Hop in mice by homologous recombination results in a partially penetrant embryonic lethal phenotype with severe developmental cardiac defects involving the myocardium. Inhibition of Hop activity in zebrafish embryos likewise disrupts cardiac development and results in severely impaired cardiac function. Hop physically interacts with serum response factor (SRF) and inhibits activation of SRF-dependent transcription by inhibiting SRF binding to DNA. Hop encodes an unusual homeodomain protein that modulates SRF-dependent cardiac-specific gene expression and cardiac development.


Neuron | 1999

Development of Noradrenergic Neurons in the Zebrafish Hindbrain Requires BMP, FGF8, and the Homeodomain Protein Soulless/Phox2a

Su Guo; Jennifer Brush; Hiroki Teraoka; Audrey Goddard; Stephen W. Wilson; Mary C. Mullins; Arnon Rosenthal

We report that the zebrafish mutation soulless, in which the development of locus coeruleus (LC) noradrenergic (NA) neurons failed to occur, disrupts the homeodomain protein Phox2a. Phox2a is not only necessary but also sufficient to induce Phox2b+ dopamine-beta-hydroxylase+ and tyrosine hydroxylase+ NA neurons in ectopic locations. Phox2a is first detected in LC progenitors in the dorsal anterior hindbrain, and its expression there is dependent on FGF8 from the mid/hindbrain boundary and on optimal concentrations of BMP signal from the epidermal ectoderm/future dorsal neural plate junction. These findings suggest that Phox2a coordinates the specification of LC in part through the induction of Phox2b and in response to cooperating signals that operate along the mediolateral and anteroposterior axes of the neural plate.


Development | 2007

Bmp and Fgf signaling are essential for liver specification in zebrafish

Donghun Shin; Chong Hyun Shin; Jennifer A. Tucker; Elke A. Ober; Fabian Rentzsch; Kenneth D. Poss; Matthias Hammerschmidt; Mary C. Mullins; Didier Y. R. Stainier

Based on data from in vitro tissue explant and ex vivo cell/bead implantation experiments, Bmp and Fgf signaling have been proposed to regulate hepatic specification. However, genetic evidence for this hypothesis has been lacking. Here, we provide in vivo genetic evidence that Bmp and Fgf signaling are essential for hepatic specification. We utilized transgenic zebrafish that overexpress dominant-negative forms of Bmp or Fgf receptors following heat-shock induction. These transgenes allow one to bypass the early embryonic requirements for Bmp and Fgf signaling, and also to completely block Bmp or Fgf signaling. We found that the expression of hhex and prox1, the earliest liver markers in zebrafish, was severely reduced in the liver region when Bmp or Fgf signaling was blocked just before hepatic specification. However, hhex and prox1 expression in adjacent endodermal and mesodermal tissues appeared unaffected by these manipulations. Additional genetic studies indicate that the endoderm maintains competence for Bmp-mediated hepatogenesis over an extended window of embryonic development. Altogether, these data provide the first genetic evidence that Bmp and Fgf signaling are essential for hepatic specification, and suggest that endodermal cells remain competent to differentiate into hepatocytes for longer than anticipated.


Nature Cell Biology | 2009

Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis

Shawn C. Little; Mary C. Mullins

Patterning the embryonic dorsoventral axis of both vertebrates and invertebrates requires signalling through bone morphogenetic proteins (BMPs). Although a well-studied process, the identity of the physiologically relevant BMP signalling complex in the Drosophila melanogaster embryo is controversial, is generally inferred from cell culture studies and has not been investigated in vertebrates. Here, we demonstrate that dorsoventral patterning in zebrafish, Danio rerio, requires two classes of non-redundant type I BMP receptors, Alk3/6 and Alk8 (activin-like kinases 3/6 and 8). We show, under physiological conditions in the embryo, that these two type I receptor classes form a complex in a manner that depends on Bmp2 and Bmp7. We found that both Bmp2-7 heterodimers, as well as Bmp2 and Bmp7 homodimers, form in the embryo. However, only recombinant ligand heterodimers can activate BMP signalling in the early embryo, whereas a combination of Bmp2 and Bmp7 homodimers cannot. We propose that only heterodimers, signalling through two distinct classes of type I receptor, possess sufficient receptor affinity in an environment of extracellular antagonists to elicit the signalling response required for dorsoventral patterning.Patterning the embryonic dorsoventral axis of both vertebrates and invertebrates requires signalling through bone morphogenetic proteins (BMPs). Although a well-studied process, the identity of the physiologically relevant BMP signalling complex in the Drosophila melanogaster embryo is controversial, is generally inferred from cell culture studies and has not been investigated in vertebrates. Here, we demonstrate that dorsoventral patterning in zebrafish, Danio rerio, requires two classes of non-redundant type I BMP receptors, Alk3/6 and Alk8 (activin-like kinases 3/6 and 8). We show, under physiological conditions in the embryo, that these two type I receptor classes form a complex in a manner that depends on Bmp2 and Bmp7. We found that both Bmp2–7 heterodimers, as well as Bmp2 and Bmp7 homodimers, form in the embryo. However, only recombinant ligand heterodimers can activate BMP signalling in the early embryo, whereas a combination of Bmp2 and Bmp7 homodimers cannot. We propose that only heterodimers, signalling through two distinct classes of type I receptor, possess sufficient receptor affinity in an environment of extracellular antagonists to elicit the signalling response required for dorsoventral patterning.


Journal of Clinical Investigation | 2009

The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization

Qi Shen; Shawn C. Little; Meiqi Xu; Julia Haupt; Cindy Ast; Takenobu Katagiri; Stefa N. Mundlos; Petra Seemann; Frederick S. Kaplan; Mary C. Mullins; Eileen M. Shore

Patients with classic fibrodysplasia ossificans progressiva, a disorder characterized by extensive extraskeletal endochondral bone formation, share a recurrent mutation (R206H) within the glycine/serine-rich domain of ACVR1/ALK2, a bone morphogenetic protein type I receptor. Through a series of in vitro assays using several mammalian cell lines and chick limb bud micromass cultures, we determined that mutant R206H ACVR1 activated BMP signaling in the absence of BMP ligand and mediated BMP-independent chondrogenesis that was enhanced by BMP. We further investigated the interaction of mutant R206H ACVR1 with FKBP1A, a glycine/serine domain-binding protein that prevents leaky BMP type I receptor activation in the absence of ligand. The mutant protein exhibited reduced binding to FKBP1A in COS-7 simian kidney cell line assays, suggesting that increased BMP pathway activity in COS-7 cells with R206H ACVR1 is due, at least in part, to decreased binding of this inhibitory factor. Consistent with these findings, in vivo analyses of zebrafish embryos showed BMP-independent hyperactivation of BMP signaling in response to the R206H mutant, resulting in increased embryonic ventralization. These data support the conclusion that the mutant R206H ACVR1 receptor in FOP patients is an activating mutation that induces BMP signaling in a BMP-independent and BMP-responsive manner to promote chondrogenesis, consistent with the ectopic endochondral bone formation in these patients.


Developmental Biology | 2008

Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish

Florence L. Marlow; Mary C. Mullins

The Balbiani body is an evolutionarily conserved asymmetric aggregate of organelles that is present in early oocytes of all animals examined, including humans. Although first identified more than 150 years ago, genes acting in the assembly of the Balbiani body have not been identified in a vertebrate. Here we show that the bucky ball gene in the zebrafish is required to assemble this universal aggregate of organelles. In the absence of bucky ball the Balbiani body fails to form, and vegetal mRNAs are not localized in oocytes. In contrast, animal pole localized oocyte markers are expanded into vegetal regions in bucky ball mutants, but patterning within the expanded animal pole remains intact. Interestingly, in bucky ball mutants an excessive number of cells within the somatic follicle cell layer surrounding the oocyte develop as micropylar cells, an animal pole specific cell fate. The single micropyle permits sperm to fertilize the egg in zebrafish. In bucky ball mutants, excess micropyles cause polyspermy. Thus bucky ball provides the first genetic access to Balbiani body formation in a vertebrate. We demonstrate that bucky ball functions during early oogenesis to regulate polarity of the oocyte, future egg and embryo. Finally, the expansion of animal identity in oocytes and somatic follicle cells suggests that somatic cell fate and oocyte polarity are interdependent.


Development Genes and Evolution | 1996

Mutations affecting pigmentation and shape of the adult zebrafish.

Pascal Haffter; J. Odenthal; Mary C. Mullins; Shuo Lin; Michael J. Farrell; E. Vogelsang; Fabian Haas; Michael Brand; Fredericus J. M. van Eeden; Makoto Furutani-Seiki; Michael Granato; Matthias Hammerschmidt; Carl-Philipp Heisenberg; Yun Jin Jiang; D. A. Kane; R. N. Kelsh; Nancy Hopkins; Christiane Nüsslein-Volhard

Abstract Mutations causing a visible phenotype in the adult serve as valuable visible genetic markers in multicellular genetic model organisms such as Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. In a large scale screen for mutations affecting early development of the zebrafish, we identified a number of mutations that are homozygous viable or semiviable. Here we describe viable mutations which produce visible phenotypes in the adult fish. These predominantly affect the fins and pigmentation, but also the eyes and body length of the adult. A number of dominant mutations caused visible phenotypes in the adult fish. Mutations in three genes, long fin, another long fin and wanda affected fin formation in the adult. Four mutations were found to cause a dominant reduction of the overall body length in the adult. The adult pigment pattern was found to be changed by dominant mutations in wanda, asterix, obelix, leopard, salz and pfeffer. Among the recessive mutations producing visible phenotypes in the homozygous adult, a group of mutations that failed to produce melanin was assayed for tyrosinase activity. Mutations in sandy produced embryos that failed to express tyrosinase activity. These are potentially useful for using tyrosinase as a marker for the generation of transgenic lines of zebrafish.


Annual Review of Genetics | 2011

Maternal and zygotic control of zebrafish dorsoventral axial patterning.

Yvette G. Langdon; Mary C. Mullins

Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.

Collaboration


Dive into the Mary C. Mullins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Granato

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Brand

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl-Philipp Heisenberg

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge