Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Carrington is active.

Publication


Featured researches published by Mary Carrington.


Science | 1996

Genetic Restriction of HIV-1 Infection and Progression to AIDS by a Deletion Allele of the CKR5 Structural Gene

Michael Dean; Mary Carrington; Cheryl A. Winkler; Gavin A. Huttley; Michael W. Smith; Rando Allikmets; James J. Goedert; Susan Buchbinder; Eric Vittinghoff; Edward D. Gomperts; Sharyne Donfield; David Vlahov; Richard A. Kaslow; Alfred J. Saah; Charles R. Rinaldo; Roger Detels; Stephen J. O'Brien

The chemokine receptor 5 (CKR5) protein serves as a secondary receptor on CD4+ T lymphocytes for certain strains of human immunodeficiency virus-type 1 (HIV-1). The CKR5 structural gene was mapped to human chromosome 3p21, and a 32-base pair deletion allele (CKR5Δ32) was identified that is present at a frequency of ∼0.10 in the Caucasian population of the United States. An examination of 1955 patients included among six well-characterized acquired immunodeficiency syndrome (AIDS) cohort studies revealed that 17 deletion homozygotes occurred exclusively among 612 exposed HIV-1 antibody-negative individuals (2.8 percent) and not at all in 1343 HIV-1-infected individuals. The frequency of CKR5 deletion heterozygotes was significantly elevated in groups of individuals that had survived HIV-1 infection for more than 10 years, and, in some risk groups, twice as frequent as their occurrence in rapid progressors to AIDS. Survival analysis clearly shows that disease progression is slower in CKR5 deletion heterozygotes than in individuals homozygous for the normal CKR5 gene. The CKR5Δ32 deletion may act as a recessive restriction gene against HIV-1 infection and may exert a dominant phenotype of delaying progression to AIDS among infected individuals.


Nature | 2000

Interleukin-1 polymorphisms associated with increased risk of gastric cancer

Emad M. El-Omar; Mary Carrington; Wong Ho Chow; Kenneth E.L. McColl; Jay H. Bream; Howard A. Young; Jesus Herrera; Jolanta Lissowska; Chiu Chin Yuan; Nathaniel Rothman; George Lanyon; Maureen P. Martin; Joseph F. Fraumeni; Charles S. Rabkin

Helicobacter pylori infection is associated with a variety of clinical outcomes including gastric cancer and duodenal ulcer disease. The reasons for this variation are not clear, but the gastric physiological response is influenced by the severity and anatomical distribution of gastritis induced by H. pylori. Thus, individuals with gastritis predominantly localized to the antrum retain normal (or even high) acid secretion, whereas individuals with extensive corpus gastritis develop hypochlorhydria and gastric atrophy, which are presumptive precursors of gastric cancer. Here we report that interleukin-1 gene cluster polymorphisms suspected of enhancing production of interleukin-1-beta are associated with an increased risk of both hypochlorhydria induced by H. pylori and gastric cancer. Two of these polymorphism are in near-complete linkage disequilibrium and one is a TATA-box polymorphism that markedly affects DNA–protein interactions in vitro. The association with disease may be explained by the biological properties of interleukin-1-beta, which is an important pro-inflammatory cytokine and a powerful inhibitor of gastric acid secretion. Host genetic factors that affect interleukin-1-beta may determine why some individuals infected with H. pylori develop gastric cancer while others do not.


Nature | 2009

Genetic variation in IL28B and spontaneous clearance of hepatitis C virus

David L. Thomas; Chloe L. Thio; Maureen P. Martin; Ying Qi; Dongliang Ge; Colm O'hUigin; Judith R. Kidd; Kenneth K. Kidd; Salim I. Khakoo; Graeme J. M. Alexander; James J. Goedert; Gregory D. Kirk; Sharyne Donfield; Hugo R. Rosen; Leslie H. Tobler; Michael P. Busch; John G. McHutchison; David B. Goldstein; Mary Carrington

Hepatitis C virus (HCV) infection is the most common blood-borne infection in the United States, with estimates of 4 million HCV-infected individuals in the United States and 170 million worldwide. Most (70–80%) HCV infections persist and about 30% of individuals with persistent infection develop chronic liver disease, including cirrhosis and hepatocellular carcinoma. Epidemiological, viral and host factors have been associated with the differences in HCV clearance or persistence, and studies have demonstrated that a strong host immune response against HCV favours viral clearance. Thus, variation in genes involved in the immune response may contribute to the ability to clear the virus. In a recent genome-wide association study, a single nucleotide polymorphism (rs12979860) 3 kilobases upstream of the IL28B gene, which encodes the type III interferon IFN-λ3, was shown to associate strongly with more than a twofold difference in response to HCV drug treatment. To determine the potential effect of rs12979860 variation on outcome to HCV infection in a natural history setting, we genotyped this variant in HCV cohorts comprised of individuals who spontaneously cleared the virus (n = 388) or had persistent infection (n = 620). We show that the C/C genotype strongly enhances resolution of HCV infection among individuals of both European and African ancestry. To our knowledge, this is the strongest and most significant genetic effect associated with natural clearance of HCV, and these results implicate a primary role for IL28B in resolution of HCV infection.


Nature Genetics | 2002

Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS.

Maureen P. Martin; Xiaojiang Gao; Jeong-Hee Lee; George W. Nelson; Roger Detels; James J. Goedert; Susan Buchbinder; Keith Hoots; David Vlahov; John Trowsdale; Michael D. Wilson; Stephen J. O'Brien; Mary Carrington

Natural killer (NK) cells provide defense in the early stages of the innate immune response against viral infections by producing cytokines and causing cytotoxicity. The killer immunoglobulin-like receptors (KIRs) on NK cells regulate the inhibition and activation of NK-cell responses through recognition of human leukocyte antigen (HLA) class I molecules on target cells KIR and HLA loci are both highly polymorphic, and some HLA class I products bind and trigger cell-surface receptors specified by KIR genes. Here we report that the activating KIR allele KIR3DS1, in combination with HLA-B alleles that encode molecules with isoleucine at position 80 (HLA-B Bw4-80Ile), is associated with delayed progression to AIDS in individuals infected with human immunodeficiency virus type 1 (HIV-1). In the absence of KIR3DS1, the HLA-B Bw4-80Ile allele was not associated with any of the AIDS outcomes measured. By contrast, in the absence of HLA-B Bw4-80Ile alleles, KIR3DS1 was significantly associated with more rapid progression to AIDS. These observations are strongly suggestive of a model involving an epistatic interaction between the two loci. The strongest synergistic effect of these loci was on progression to depletion of CD4+ T cells, which suggests that a protective response of NK cells involving KIR3DS1 and its HLA class I ligands begins soon after HIV-1 infection.


Nature Genetics | 2006

A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC

Paul I. W. de Bakker; Gil McVean; Pardis C. Sabeti; Marcos M Miretti; Todd Green; Jonathan Marchini; Xiayi Ke; Alienke J. Monsuur; Pamela Whittaker; Marcos Delgado; Jonathan Morrison; Angela Richardson; Emily Walsh; Xiaojiang Gao; Luana Galver; John Hart; David A. Hafler; Margaret A. Pericak-Vance; John A. Todd; Mark J. Daly; John Trowsdale; Cisca Wijmenga; Tim J Vyse; Stephan Beck; Sarah S. Murray; Mary Carrington; Simon G. Gregory; Panos Deloukas; John D. Rioux

The proteins encoded by the classical HLA class I and class II genes in the major histocompatibility complex (MHC) are highly polymorphic and are essential in self versus non-self immune recognition. HLA variation is a crucial determinant of transplant rejection and susceptibility to a large number of infectious and autoimmune diseases. Yet identification of causal variants is problematic owing to linkage disequilibrium that extends across multiple HLA and non-HLA genes in the MHC. We therefore set out to characterize the linkage disequilibrium patterns between the highly polymorphic HLA genes and background variation by typing the classical HLA genes and >7,500 common SNPs and deletion-insertion polymorphisms across four population samples. The analysis provides informative tag SNPs that capture much of the common variation in the MHC region and that could be used in disease association studies, and it provides new insight into the evolutionary dynamics and ancestral origins of the HLA loci and their haplotypes.


Nature Genetics | 2007

Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1

Maureen P. Martin; Ying Qi; Xiaojiang Gao; Eriko Yamada; Jeffrey N. Martin; Florencia Pereyra; Sara Colombo; Elizabeth E. Brown; W. Lesley Shupert; John P. Phair; James J. Goedert; Susan Buchbinder; Gregory D. Kirk; Amalio Telenti; Mark Connors; Stephen J. O'Brien; Bruce D. Walker; Peter Parham; Steven G. Deeks; Daniel W. McVicar; Mary Carrington

Allotypes of the natural killer (NK) cell receptor KIR3DL1 vary in both NK cell expression patterns and inhibitory capacity upon binding to their ligands, HLA-B Bw4 molecules, present on target cells. Using a sample size of over 1,500 human immunodeficiency virus (HIV)+ individuals, we show that various distinct allelic combinations of the KIR3DL1 and HLA-B loci significantly and strongly influence both AIDS progression and plasma HIV RNA abundance in a consistent manner. These genetic data correlate very well with previously defined functional differences that distinguish KIR3DL1 allotypes. The various epistatic effects observed here for common, distinct KIR3DL1 and HLA-B Bw4 combinations are unprecedented with regard to any pair of genetic loci in human disease, and indicate that NK cells may have a critical role in the natural history of HIV infection.


The New England Journal of Medicine | 2011

HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans

Mark McCormack; Ana Alfirevic; Stephane Bourgeois; John J. Farrell; Dalia Kasperavičiūtė; Mary Carrington; Graeme J. Sills; Tony Marson; Xiaoming Jia; Paul I. W. de Bakker; Krishna Chinthapalli; Mariam Molokhia; Michael R. Johnson; Gerard O'Connor; Elijah Chaila; Saud Alhusaini; Rodney A. Radtke; Erin L. Heinzen; Nicole M. Walley; Massimo Pandolfo; Werner J. Pichler; B. Kevin Park; Chantal Depondt; Sanjay M. Sisodiya; David B. Goldstein; Panos Deloukas; Norman Delanty; Gianpiero L. Cavalleri; Munir Pirmohamed

BACKGROUND Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS The HLA-A*3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P=3.5×10(-8)). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A*3101 allele (P=1.1×10(-6)). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS-TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS The presence of the HLA-A*3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.).


American Journal of Human Genetics | 1998

Dating the Origin of the CCR5-Δ32 AIDS-Resistance Allele by the Coalescence of Haplotypes

J. Claiborne Stephens; David Reich; David B. Goldstein; Hyoung Doo Shin; Michael W. Smith; Mary Carrington; Cheryl A. Winkler; Gavin A. Huttley; Rando Allikmets; Lynn M. Schriml; Bernard Gerrard; Michael Malasky; Maria D. Ramos; Susanne Morlot; Maria Tzetis; Carole Oddoux; Francesco S. di Giovine; Georgios Nasioulas; David Chandler; Michael Aseev; Matthew Hanson; Luba Kalaydjieva; Damjan Glavač; Paolo Gasparini; Emmanuel Kanavakis; Mireille Claustres; Marios Kambouris; Harry Ostrer; Gw Duff; V. S. Baranov

The CCR5-Delta32 deletion obliterates the CCR5 chemokine and the human immunodeficiency virus (HIV)-1 coreceptor on lymphoid cells, leading to strong resistance against HIV-1 infection and AIDS. A genotype survey of 4,166 individuals revealed a cline of CCR5-Delta32 allele frequencies of 0%-14% across Eurasia, whereas the variant is absent among native African, American Indian, and East Asian ethnic groups. Haplotype analysis of 192 Caucasian chromosomes revealed strong linkage disequilibrium between CCR5 and two microsatellite loci. By use of coalescence theory to interpret modern haplotype genealogy, we estimate the origin of the CCR5-Delta32-containing ancestral haplotype to be approximately 700 years ago, with an estimated range of 275-1,875 years. The geographic cline of CCR5-Delta32 frequencies and its recent emergence are consistent with a historic strong selective event (e.g. , an epidemic of a pathogen that, like HIV-1, utilizes CCR5), driving its frequency upward in ancestral Caucasian populations.


Journal of Immunology | 2002

Cutting Edge: Susceptibility to Psoriatic Arthritis: Influence of Activating Killer Ig-Like Receptor Genes in the Absence of Specific HLA-C Alleles

Maureen P. Martin; George W. Nelson; Jeong-Hee Lee; Fawnda Pellett; Xiaojiang Gao; Judith Wade; Michael J. Wilson; John Trowsdale; Dafna D. Gladman; Mary Carrington

NK cell activity is partially controlled through interactions between killer Ig-like receptors (KIR) on NK cells and their respective HLA class I ligands. Independent segregation of HLA and KIR genes, along with KIR specificity for particular HLA allotypes, raises the possibility that any given individual may express KIR molecules for which no ligand is present. Inhibitory receptor genes KIR2DL2/3 and KIR2DL1 were present in nearly all subjects sampled in this study, whereas their respective activating homologs, KIR2DS2 and KIR2DS1, are each present in about half of the subjects. In this work we report that subjects with activating KIR2DS1 and/or KIR2DS2 genes are susceptible to developing psoriatic arthritis, but only when HLA ligands for their homologous inhibitory receptors, KIR2DL1 and KIR2DL2/3, are missing. Absence of ligands for inhibitory KIRs could potentially lower the threshold for NK (and/or T) cell activation mediated through activating receptors, thereby contributing to pathogenesis of psoriatic arthritis.


Nature Medicine | 2009

Sex differences in the Toll-like receptor–mediated response of plasmacytoid dendritic cells to HIV-1

Angela Meier; J. Judy Chang; Ellen S. Chan; Richard B. Pollard; Harlyn K. Sidhu; Smita Kulkarni; Tom Fang Wen; Robert Lindsay; Liliana Orellana; Donna Mildvan; Suzane Bazner; Hendrik Streeck; Galit Alter; Jeffrey D. Lifson; Mary Carrington; Ronald J. Bosch; Gregory K. Robbins; Marcus Altfeld

Manifestations of viral infections can differ between women and men, and marked sex differences have been described in the course of HIV-1 disease. HIV-1–infected women tend to have lower viral loads early in HIV-1 infection but progress faster to AIDS for a given viral load than men. Here we show substantial sex differences in the response of plasmacytoid dendritic cells (pDCs) to HIV-1. pDCs derived from women produce markedly more interferon-α (IFN-α) in response to HIV-1–encoded Toll-like receptor 7 (TLR7) ligands than pDCs derived from men, resulting in stronger secondary activation of CD8+ T cells. In line with these in vitro studies, treatment-naive women chronically infected with HIV-1 had considerably higher levels of CD8+ T cell activation than men after adjusting for viral load. These data show that sex differences in TLR-mediated activation of pDCs may account for higher immune activation in women compared to men at a given HIV-1 viral load and provide a mechanism by which the same level of viral replication might result in faster HIV-1 disease progression in women compared to men. Modulation of the TLR7 pathway in pDCs may therefore represent a new approach to reduce HIV-1–associated pathology.

Collaboration


Dive into the Mary Carrington's collaboration.

Top Co-Authors

Avatar

Maureen P. Martin

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Stephen J. O'Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

James J. Goedert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George W. Nelson

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Dean

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Roger Detels

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge