Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Dasso is active.

Publication


Featured researches published by Mary Dasso.


Current Biology | 1999

The ran GTPase regulates mitotic spindle assembly.

Petr Kalab; Robert T. Pu; Mary Dasso

Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.


Journal of Cell Biology | 2002

SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles

Jomon Joseph; Shyh-Han Tan; Tatiana S. Karpova; James G. McNally; Mary Dasso

RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1s mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1–conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.


Current Biology | 2004

The RanGAP1-RanBP2 Complex Is Essential for Microtubule-Kinetochore Interactions In Vivo

Jomon Joseph; Song-Tao Liu; Sandra A. Jablonski; Tim J. Yen; Mary Dasso

RanGAP1 is the activating protein for the Ran GTPase. Vertebrate RanGAP1 is conjugated to a small ubiquitin-like protein, SUMO-1. This modification promotes association of RanGAP1 with the interphase nuclear pore complex (NPC) through binding to the nucleoporin RanBP2, also known as Nup358. During mitosis, RanGAP1 is concentrated at kinetochores in a microtubule- (MT) and SUMO-1-dependent fashion. RanBP2 is also abundantly found on kinetochores in mitosis. Here we show that ablation of proteins required for MT-kinetochore attachment (Hec1/Ndc80, Nuf2 ) disrupts RanGAP1 and RanBP2 targeting to kinetochores. No similar disruption was observed after ablation of proteins nonessential for MT-kinetochore interactions (CENP-I, Bub1, CENP-E ). Acquisition of RanGAP1 and RanBP2 by kinetochores is temporally correlated in untreated cells with MT attachment. These patterns of accumulation suggest a loading mechanism wherein the RanGAP1-RanBP2 complex may be transferred along the MT onto the kinetochore. Depletion of RanBP2 caused mislocalization of RanGAP1, Mad1, Mad2, CENP-E, and CENP-F, as well as loss of cold-stable kinetochore-MT interactions and accumulation of mitotic cells with multipolar spindles and unaligned chromosomes. Taken together, our observations indicate that RanBP2 and RanGAP1 are targeted as a single complex that is both regulated by and essential for stable kinetochore-MT association.


Current Biology | 1998

Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2.

Hisato Saitoh; Duncan B. Sparrow; Tetsuo Shiomi; Robert T. Pu; Takeharu Nishimoto; Timothy J. Mohun; Mary Dasso

The yeast UBC9 gene encodes a protein with homology to the E2 ubiquitin-conjugating enzymes that mediate the attachment of ubiquitin to substrate proteins [1]. Depletion of Ubc9p arrests cells in G2 or early M phase and stabilizes B-type cyclins [1]. p18(Ubc9), the Xenopus homolog of Ubc9p, associates specifically with p88(RanGAP1) and p340(RanBP2) [2]. Ran-binding protein 2 (p340(RanBP2)) is a nuclear pore protein [3] [4], and p88(RanGAP1) is a modified form of RanGAP1, a GTPase-activating protein for the small GTPase Ran [2]. It has recently been shown that mammalian RanGAP1 can be conjugated with SUMO-1, a small ubiquitin-related modifier [5-7], and that SUMO-1 conjugation promotes RanGAP1s interaction with RanBP2 [2,5,6]. Here we show that p18(Ubc9) acts as an E2-like enzyme for SUMO-1 conjugation, but not for ubiquitin conjugation. This suggests that the SUMO-1 conjugation pathway is biochemically similar to the ubiquitin conjugation pathway but uses a distinct set of enzymes and regulatory mechanisms. We also show that p18(Ubc9) interacts specifically with the internal repeat domain of RanBP2, which is a substrate for SUMO-1 conjugation in Xenopus egg extracts.


Current Opinion in Cell Biology | 2003

The small GTPase Ran: interpreting the signs

B. Booth Quimby; Mary Dasso

The small GTPase Ran has roles in nuclear transport, mitotic spindle assembly and nuclear envelope assembly. During the past three years, it has become clear that many of these processes rely on conserved molecular mechanisms involving Ran-GTP-binding proteins of the importin-beta superfamily. Moreover, recent experimental evidence has documented the distribution of Ran-GTP within cells and supported the notion that Ran plays a central role in the spatial and temporal organization of the eukaryotic cell.


Current Biology | 2002

The Ran GTPase: theme and variations.

Mary Dasso

The small GTPase Ran has roles in multiple cellular processes, including nuclear transport, mitotic spindle assembly, the regulation of cell cycle progression and nuclear assembly. The past year has seen a remarkable unification of these different roles with respect to the effectors and mechanisms through which they function. Our emergent understanding of Ran suggests that it plays a central role in spatial and temporal organization of the vertebrate cell.


Nature Cell Biology | 2005

Crm1 is a mitotic effector of Ran-GTP in somatic cells

Alexei Arnaoutov; Yoshiaki Azuma; Katharina Ribbeck; Jomon Joseph; Yekaterina Boyarchuk; Tatiana S. Karpova; James G. McNally; Mary Dasso

The Ran GTPase controls multiple cellular processes, including nuclear transport, mitotic checkpoints, spindle assembly and post-mitotic nuclear envelope reassembly. Here we examine the mitotic function of Crm1, the Ran-GTP-binding nuclear export receptor for leucine-rich cargo (bearing nuclear export sequence) and Snurportin-1 (ref. 3). We find that Crm1 localizes to kinetochores, and that Crm1 ternary complex assembly is essential for Ran-GTP-dependent recruitment of Ran GTPase-activating protein 1 (Ran-GAP1) and Ran-binding protein 2 (Ran-BP2) to kinetochores. We further show that Crm1 inhibition by leptomycin B disrupts mitotic progression and chromosome segregation. Analysis of spindles within leptomycin B-treated cells shows that their centromeres were under increased tension. In leptomycin B-treated cells, centromeres frequently associated with continuous microtubule bundles that spanned the centromeres, indicating that their kinetochores do not maintain discrete end-on attachments to single kinetochore fibres. Similar spindle defects were observed in temperature-sensitive Ran pathway mutants (tsBN2 cells). Taken together, our findings demonstrate that Crm1 and Ran-GTP are essential for Ran-BP2/Ran-GAP1 recruitment to kinetochores, for definition of kinetochore fibres and for chromosome segregation at anaphase. Thus, Crm1 is a critical Ran-GTP effector for mitotic spindle assembly and function in somatic cells.


Journal of Cell Biology | 2003

SUMO-2/3 regulates topoisomerase II in mitosis

Yoshiaki Azuma; Alexei Arnaoutov; Mary Dasso

We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase–anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.


Trends in Biochemical Sciences | 1993

RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles.

Mary Dasso

In the eukaryotic cell cycle, nuclear DNA replication (S phase) and mitosis (M phase) are linked such that replication must be complete before mitosis can begin. In order for this coupling to work, there must be some system for detecting unreplicated DNA and transducing an inhibitory signal to prevent the activation of mitotic factors. The DNA-bound protein RCC1 is involved in this regulatory process since mitosis initiates before DNA synthesis is finished in the absence of RCC1. This has led to the proposal that RCC1 is a signalling molecule, detecting unreplicated DNA and producing the inhibitory signal. However, mutants in RCC1 show defects beyond their inability to regulate the cell cycle, suggesting other roles for the RCC1 protein in the nucleus and thus hitherto unexplored relationships between cell cycle control and other cellular processes.


Nature Cell Biology | 2010

The Nup107‑160 complex and γ‑TuRC regulate microtubule polymerization at kinetochores

Ram K. Mishra; Papia Chakraborty; Alexei Arnaoutov; Beatriz M. A. Fontoura; Mary Dasso

The metazoan nuclear pore complex (NPC) disassembles during mitosis, and many of its constituents distribute onto spindles and kinetochores, including the Nup107-160 sub-complex. We have found that Nup107-160 interacts with the γ-tubulin ring complex (γ-TuRC), an essential and conserved microtubule nucleator, and recruits γ-TuRC to unattached kinetochores. The unattached kinetochores nucleate microtubules in a manner that is regulated by Ran GTPase; such microtubules contribute to the formation of kinetochore fibres (k-fibres), microtubule bundles connecting kinetochores to spindle poles. Our data indicate that Nup107-160 and γ-TuRC act cooperatively to promote spindle assembly through microtubule nucleation at kinetochores: HeLa cells lacking Nup107-160 or γ-TuRC were profoundly deficient in kinetochore-associated microtubule nucleation. Moreover, co-precipitated Nup107-160– γ-TuRC complexes nucleated microtubule formation in assays using purified tubulin. Although Ran did not regulate microtubule nucleation by γ-TuRC alone, Nup107-160–γ-TuRC complexes required Ran–GTP for microtubule nucleation. Collectively, our observations show that Nup107-160 promotes spindle assembly through Ran–GTP-regulated nucleation of microtubules by γ-TuRC at kinetochores, and reveal a relationship between nucleoporins and the microtubule cytoskeleton.

Collaboration


Dive into the Mary Dasso's collaboration.

Top Co-Authors

Avatar

Alexei Arnaoutov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert T. Pu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jomon Joseph

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hisato Saitoh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Beatriz M. A. Fontoura

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunju Ryu

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge