Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary E. Pacold is active.

Publication


Featured researches published by Mary E. Pacold.


Journal of Virology | 2011

Detection of Minority Resistance during Early HIV-1 Infection: Natural Variation and Spurious Detection rather than Transmission and Evolution of Multiple Viral Variants†

Sara Gianella; Wayne Delport; Mary E. Pacold; Jason A. Young; Jun Yong Choi; Susan J. Little; Douglas D. Richman; Sergei L. Kosakovsky Pond; Davey M. Smith

ABSTRACT Reports of a high frequency of the transmission of minority viral populations with drug-resistant mutations (DRM) are inconsistent with evidence that HIV-1 infections usually arise from mono- or oligoclonal transmission. We performed ultradeep sequencing (UDS) of partial HIV-1 gag, pol, and env genes from 32 recently infected individuals. We then evaluated overall and per-site diversity levels, selective pressure, sequence reproducibility, and presence of DRM and accessory mutations (AM). To differentiate biologically meaningful mutations from those caused by methodological errors, we obtained multinomial confidence intervals (CI) for the proportion of DRM at each site and fitted a binomial mixture model to determine background error rates for each sample. We then examined the association between detected minority DRM and the virologic failure of first-line antiretroviral therapy (ART). Similar to other studies, we observed increased detection of DRM at low frequencies (average, 0.56%; 95% CI, 0.43 to 0.69; expected UDS error, 0.21 ± 0.08% mutations/site). For 8 duplicate runs, there was variability in the proportions of minority DRM. There was no indication of increased diversity or selection at DRM sites compared to other sites and no association between minority DRM and AM. There was no correlation between detected minority DRM and clinical failure of first-line ART. It is unlikely that minority viral variants harboring DRM are transmitted and maintained in the recipient host. The majority of low-frequency DRM detected using UDS are likely errors inherent to UDS methodology or a consequence of error-prone HIV-1 replication.


AIDS | 2009

A Public Health Model for the Molecular Surveillance of HIV Transmission in San Diego, California

Davey M. Smith; Susanne J. May; Samantha Tweeten; Lydia N. Drumright; Mary E. Pacold; Sergei L. Kosakovsky Pond; Rick Pesano; Yolanda Lie; Douglas D. Richman; Simon D. W. Frost; Christopher H. Woelk; Susan J. Little

Background:Current public health efforts often use molecular technologies to identify and contain communicable disease networks, but not for HIV. Here, we investigate how molecular epidemiology can be used to identify highly related HIV networks within a population and how voluntary contact tracing of sexual partners can be used to selectively target these networks. Methods:We evaluated the use of HIV-1 pol sequences obtained from participants of a community-recruited cohort (n = 268) and a primary infection research cohort (n = 369) to define highly related transmission clusters and the use of contact tracing to link other individuals (n = 36) within these clusters. The presence of transmitted drug resistance was interpreted from the pol sequences (Calibrated Population Resistance v3.0). Results:Phylogenetic clustering was conservatively defined when the genetic distance between any two pol sequences was less than 1%, which identified 34 distinct transmission clusters within the combined community-recruited and primary infection research cohorts containing 160 individuals. Although sequences from the epidemiologically linked partners represented approximately 5% of the total sequences, they clustered with 60% of the sequences that clustered from the combined cohorts (odds ratio 21.7; P ≤ 0.01). Major resistance to at least one class of antiretroviral medication was found in 19% of clustering sequences. Conclusion:Phylogenetic methods can be used to identify individuals who are within highly related transmission groups, and contact tracing of epidemiologically linked partners of recently infected individuals can be used to link into previously defined transmission groups. These methods could be used to implement selectively targeted prevention interventions.


AIDS Research and Human Retroviruses | 2010

Comparison of methods to detect HIV dual infection.

Mary E. Pacold; Davey M. Smith; Susan J. Little; Pok Man Cheng; Parris S. Jordan; Caroline C. Ignacio; Douglas D. Richman; Sergei L. Kosakovsky Pond

Current methods to detect intraclade HIV dual infection are poorly suited for determining its prevalence in large cohorts. To investigate the potential of ultra-deep sequencing to screen for dual infection, we compared it to bulk sequence-based synonymous mixture index and the current standard of single genome sequencing. The synonymous mixture index identified samples likely to harbor dual infection, while ultra-deep sequencing captured more intra-host viral diversity than single genome sequencing at approximately 40% of the cost and 20% of the laboratory and analysis time. The synonymous mixture index and ultra-deep sequencing are promising methods for rapid and cost-effective systematic identification of HIV dual infection.


The Journal of Infectious Diseases | 2014

Incidence and Prevalence of Intrasubtype HIV-1 Dual Infection in At-Risk Men in the United States

Gabriel A. Wagner; Mary E. Pacold; Sergei L. Kosakovsky Pond; Gemma Caballero; Antoine Chaillon; Abby E. Rudolph; Sheldon R. Morris; Susan J. Little; Douglas D. Richman; Davey M. Smith

BACKGROUND Human immunodeficiency virus type 1 (HIV-1) dual infection (DI) has been associated with decreased CD4 T-cell counts and increased viral loads; however, the frequency of intrasubtype DI is poorly understood. We used ultradeep sequencing (UDS) to estimate the frequency of DI in a primary infection cohort of predominantly men who have sex with men (MSM). METHODS  HIV-1 genomes from longitudinal blood samples of recently infected, therapy-naive participants were interrogated with UDS. DI was confirmed when maximum sequence divergence was excessive and supported by phylogenetic analysis. Coinfection was defined as DI at baseline; superinfection was monoinfection at baseline and DI at a later time point. RESULTS  Of 118 participants, 7 were coinfected and 10 acquired superinfection. Superinfection incidence rate was 4.96 per 100 person-years (95% confidence interval [CI], 2.67-9.22); 6 occurred in the first year and 4 in the second. Overall cumulative prevalence of intrasubtype B DI was 14.4% (95% CI, 8.6%-22.1%). Primary HIV-1 incidence was 4.37 per 100 person-years (95% CI, 3.56-5.36). CONCLUSIONS  Intrasubtype DI was frequent and comparable to primary infection rates among MSM in San Diego; however, superinfection rates declined over time. DI is likely an important component of the HIV epidemic dynamics, and development of stronger immune responses to the initial infection may protect from superinfection.


AIDS | 2012

Clinical, Virologic, and Immunologic Correlates of HIV-1 Intraclade B Dual Infection among Men who Have Sex with Men

Mary E. Pacold; Sergei L. Kosakovsky Pond; Gabriel A. Wagner; Wayne Delport; Daniel L. Bourque; Douglas D. Richman; Susan J. Little; Davey M. Smith

Objective:To investigate the susceptibilities to and consequences of HIV-1 dual infection. Design:We compared clinical, virologic, and immunologic factors between participants who were dually infected with HIV-1 subtype B and monoinfected controls who were matched by ongoing HIV risk factor. Methods:The viral load and CD4 progressions of dually and singly infected participant groups were compared with linear mixed-effects models, and individual dynamics before and after superinfection were assessed with a structural change test (Chow test). Recombination breakpoint analysis (GARD), HLA frequency analysis, and cytotoxic T-lymphocyte (CTL) epitope mapping were also performed (HIV LANL Database). Results:The viral loads of dually infected participants increased more over 3 years of follow-up than the viral loads of monoinfected controls, whereas CD4 progressions of the two groups did not differ. Viral escape from CTL responses following superinfection was observed in two participants whose superinfecting strain completely replaced the initial strain. This pattern was not seen among participants whose superinfecting virus persisted in a recombinant form with the initial virus or was only detected transiently. Several HLA types were over-represented in dually infected participants as compared to monoinfected controls. Conclusions:These results identify potential factors for dual infection susceptibility and further define its clinical consequences.


PLOS ONE | 2013

HIV-1 Clade B pol Evolution following Primary Infection

George K. Hightower; Susanne J. May; Josué Pérez-Santiago; Mary E. Pacold; Gabriel A. Wagner; Susan J. Little; Douglas D. Richman; Sanjay R. Mehta; Davey M. Smith; Sergei L. Kosakovsky Pond

Objective Characterize intra-individual HIV-1 subtype B pol evolution in antiretroviral naive individuals. Design Longitudinal cohort study of individuals enrolled during primary infection. Methods Eligible individuals were antiretroviral naïve participants enrolled in the cohort from December 1997-December 2005 and having at least two blood samples available with the first one collected within a year of their estimated date of infection. Population-based pol sequences were generated from collected blood samples and analyzed for genetic divergence over time in respect to dual infection status, HLA, CD4 count and viral load. Results 93 participants were observed for a median of 1.8 years (Mean = 2.2 years, SD = 1.9 years). All participants classified as mono-infected had less than 0.7% divergence between any two of their pol sequences using the Tamura-Nei model (TN93), while individuals with dual infection had up to 7.0% divergence. The global substitution rates (substitutions/nucleotide/year) for mono and dually infected individuals were significantly different (p<0.001); however, substitution rates were not associated with HLA haplotype, CD4 or viral load. Conclusions Even after a maximum of almost 9 years of follow-up, all mono-infected participants had less than 1% divergence between baseline and longitudinal sequences, while participants with dual infection had 10 times greater divergence. These data support the use of HIV-1 pol sequence data to evaluate transmission events, networks and HIV-1 dual infection.


Journal of Virological Methods | 2009

The efficiency of single genome amplification and sequencing is improved by quantitation and use of a bioinformatics tool

David M. Butler; Mary E. Pacold; Parris S. Jordan; Douglas D. Richman; Davey M. Smith

Typically, population-based sequencing of HIV does not detect minority variants present at levels below 20-30%. Single genome amplification (SGA) and sequencing improves detection, but it requires many PCRs to find the optimal terminal dilution to use. A novel method for guiding the selection of a terminal dilution was developed and compared to standard methods. A quantitative real-time PCR (qRT-PCR) protocol was developed. HIV RNA was extracted, reverse transcribed, and quantitated. A bioinformatics web-based application was created for calculating the optimal concentration of cDNA to use based on results of a trial PCR using the dilution suggested by the qRT-PCR results. This method was compared to the standard. Using the standard protocol, the mean number of PCRs giving an average of 30 (26-34, SD=3) SGA per sample was 245 (218-266, SD=20) after an average of 8 trial dilutions. Using this method, 135 PCRs (135-135, SD=0) produced 30 (27-30, SD=1) SGA using exactly two dilutions. This new method reduced turnaround time from 8 to 2 days. Standard methods of SGA sequencing can be costly and both time- and labor-intensive. By choosing a terminal dilution concentration with the proposed method, the number of PCRs required is decreased and efficiency improved.


Journal of Virology | 2013

Dynamics of Viral Evolution and Neutralizing Antibody Response after HIV-1 Superinfection

Antoine Chaillon; Gabriel A. Wagner; N. Lance Hepler; Susan J. Little; Sergei L. Kosakovsky Pond; Gemma Caballero; Mary E. Pacold; Pham Phung; Terri Wrin; Douglas D. Richman; Joel O. Wertheim; Davey M. Smith

ABSTRACT Investigating the incidence and prevalence of HIV-1 superinfection is challenging due to the complex dynamics of two infecting strains. The superinfecting strain can replace the initial strain, be transiently expressed, or persist along with the initial strain in distinct or in recombined forms. Various selective pressures influence these alternative scenarios in different HIV-1 coding regions. We hypothesized that the potency of the neutralizing antibody (NAb) response to autologous viruses would modulate viral dynamics in env following superinfection in a limited set of superinfection cases. HIV-1 env pyrosequencing data were generated from blood plasma collected from 7 individuals with evidence of superinfection. Viral variants within each patient were screened for recombination, and viral dynamics were evaluated using nucleotide diversity. NAb responses to autologous viruses were evaluated before and after superinfection. In 4 individuals, the superinfecting strain replaced the original strain. In 2 individuals, both initial and superinfecting strains continued to cocirculate. In the final individual, the surviving lineage was the product of interstrain recombination. NAb responses to autologous viruses that were detected within the first 2 years of HIV-1 infection were weak or absent for 6 of the 7 recently infected individuals at the time of and shortly following superinfection. These 6 individuals had detectable on-going viral replication of distinct superinfecting virus in the env coding region. In the remaining case, there was an early and strong autologous NAb response, which was associated with extensive recombination in env between initial and superinfecting strains. This extensive recombination made superinfection more difficult to identify and may explain why the detection of superinfection has typically been associated with low autologous NAb titers.


AIDS | 2010

Protease polymorphisms in HIV-1 subtype CRF01_AE represent selection by antiretroviral therapy and host immune pressure.

Weerawat Manosuthi; David M. Butler; Josué Pérez-Santiago; Art F. Y. Poon; Satish K. Pillai; Sanjay R. Mehta; Mary E. Pacold; Douglas D. Richman; Sergei L. Kosakovsky Pond; Davey M. Smith

Background:Most of our knowledge about how antiretrovirals and host immune responses influence the HIV-1 protease gene is derived from studies of subtype B virus. We investigated the effect of protease resistance-associated mutations (PRAMs) and population-based HLA haplotype frequencies on polymorphisms found in CRF01_AE pro. Methods:We used all CRF01_AE protease sequences retrieved from the LANL database and obtained regional HLA frequencies from the dbMHC database. Polymorphisms and major PRAMs in the sequences were identified using the Stanford Resistance Database, and we performed phylogenetic and selection analyses using HyPhy. HLA binding affinities were estimated using the Immune Epitope Database and Analysis. Results:Overall, 99% of CRF01_AE sequences had at least 1 polymorphism and 10% had at least 1 major PRAM. Three polymorphisms (L10 V, K20RMI and I62 V) were associated with the presence of a major PRAM (P < 0.05). Compared to the subtype B consensus, six additional polymorphisms (I13 V, E35D, M36I, R41K, H69K, L89M) were identified in the CRF01_AE consensus; all but L89M were located within epitopes recognized by HLA class I alleles. Of the predominant HLA haplotypes in the Asian regions of CRF01_AE origin, 80% were positively associated with the observed polymorphisms, and estimated HLA binding affinity was estimated to decrease 19–40 fold with the observed polymorphisms at positions 35, 36 and 41. Conclusion:Polymorphisms in CRF01_AE protease gene were common, and polymorphisms at residues 10, 20 and 62 most likely represent selection by use of protease inhibitors, whereas R41K and H69K were more likely attributable to recognition of epitopes by the HLA haplotypes of the host population.


Journal of Acquired Immune Deficiency Syndromes | 2008

Herpes simplex virus type 2 acquisition during recent HIV infection does not influence plasma HIV levels.

Edward R. Cachay; Simon D. W. Frost; Art F. Y. Poon; David Looney; Sherry M Rostami; Mary E. Pacold; Douglas D. Richman; Susan J. Little; Davey M. Smith

We assessed the effect of herpes simplex virus type 2 (HSV-2) acquisition on the plasma HIV RNA and CD4 cell levels among individuals with primary HIV infection using a retrospective cohort analysis. We studied 119 adult, antiretroviral-naive, recently HIV-infected men with a negative HSV-2-specific enzyme immunoassay (EIA) result at enrollment. HSV-2 acquisition was determined by seroconversion on HSV-2 EIA, confirmed by Western blot analysis. Ten men acquired HSV-2 infection a median of 1.3 years after HIV infection (HSV-2 incidence rate of 7.4 per 100 person-years of follow-up). The median time of follow-up after acquiring HSV-2 infection was 303 days. All men except 1 were asymptomatic during HSV-2 acquisition, and only 1 HSV-2 seroconverter, who was asymptomatic, had a transient increase in blood HIV load (0.5 log10 copies/mL over 11 days). The HSV-2 incidence rate was high in our cohort of recently HIV-infected individuals; however, HSV-2 acquisition did not significantly change the plasma HIV dynamics and CD4 cell levels.

Collaboration


Dive into the Mary E. Pacold's collaboration.

Top Co-Authors

Avatar

Davey M. Smith

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge