Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary E. Swartz is active.

Publication


Featured researches published by Mary E. Swartz.


Nature Genetics | 2008

MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis.

Johann K. Eberhart; Xinjun He; Mary E. Swartz; Yi-Lin Yan; Hao Song; Taylor C. Boling; Allison K Kunerth; Macie B. Walker; Charles B. Kimmel; John H. Postlethwait

Disruption of signaling pathways such as those mediated by sonic hedgehog (Shh) or platelet-derived growth factor (Pdgf) causes craniofacial abnormalities, including cleft palate. The role that microRNAs play in modulating palatogenesis, however, is completely unknown. We show that, in zebrafish, the microRNA Mirn140 negatively regulates Pdgf signaling during palatal development, and we provide a mechanism for how disruption of Pdgf signaling causes palatal clefting. The pdgf receptor alpha (pdgfra) 3′ UTR contained a Mirn140 binding site functioning in the negative regulation of Pdgfra protein levels in vivo. pdgfra mutants and Mirn140-injected embryos shared a range of facial defects, including clefting of the crest-derived cartilages that develop in the roof of the larval mouth. Concomitantly, the oral ectoderm beneath where these cartilages develop lost pitx2 and shha expression. Mirn140 modulated Pdgf-mediated attraction of cranial neural crest cells to the oral ectoderm, where crest-derived signals were necessary for oral ectodermal gene expression. Mirn140 loss of function elevated Pdgfra protein levels, altered palatal shape and caused neural crest cells to accumulate around the optic stalk, a source of the ligand Pdgfaa. These results suggest that the conserved regulatory interactions of mirn140 and pdgfra define an ancient mechanism of palatogenesis, and they provide candidate genes for cleft palate.


Development | 2006

Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development

Johann K. Eberhart; Mary E. Swartz; Justin Gage Crump; Charles B. Kimmel

Hedgehog (Hh) signaling plays multiple roles in the development of the anterior craniofacial skeleton. We show that the earliest function of Hh is indirect, regulating development of the stomodeum, or oral ectoderm. A subset of post-migratory neural crest cells, that gives rise to the cartilages of the anterior neurocranium and the pterygoid process of the palatoquadrate in the upper jaw, condenses upon the upper or roof layer of the stomodeal ectoderm in the first pharyngeal arch. We observe that in mutants for the Hh co-receptor smoothened (smo) the condensation of this specific subset of crest cells fails, and expression of several genes is lost in the stomodeal ectoderm. Genetic mosaic analyses with smo mutants show that for the crest cells to condense the crucial target tissue receiving the Hh signal is the stomodeum, not the crest. Blocking signaling with cyclopamine reveals that the crucial stage, for both crest condensation and stomodeal marker expression, is at the end of gastrulation - some eight to ten hours before crest cells migrate to associate with the stomodeum. Two Hh genes, shh and twhh, are expressed in midline tissue at this stage, and we show using mosaics that for condensation and skeletogenesis only the ventral brain primordium, and not the prechordal plate, is an important Hh source. Thus, we propose that Hh signaling from the brain primordium is required for proper specification of the stomodeum and the stomodeum, in turn, promotes condensation of a subset of neural crest cells that will form the anterior neurocranial and upper jaw cartilage.


The Journal of Neuroscience | 2004

Ephrin-A5 Exerts Positive or Inhibitory Effects on Distinct Subsets of EphA4-Positive Motor Neurons

Johann K. Eberhart; Jason Barr; Sinead O'Connell; Alleda E. Flagg; Mary E. Swartz; Karina S. Cramer; Kathryn W. Tosney; Elena B. Pasquale; Catherine E. Krull

Eph receptor tyrosine kinases and ephrins are required for axon patterning and plasticity in the developing nervous system. Typically, Eph–ephrin interactions promote inhibitory events; for example, prohibiting the entry of neural cells into certain embryonic territories. Here, we show that distinct subsets of motor neurons that express EphA4 respond differently to ephrin-A5. EphA4-positive LMC(l) axons avoid entering ephrin-A5-positive hindlimb mesoderm. In contrast, EphA4-positive MMC(m) axons extend through ephrin-A5-positive rostral half-sclerotome. Blocking EphA4 activation in MMC(m) neurons or expanding the domain of ephrin-A5 expression in the somite results in the aberrant growth of MMC(m) axons into the caudal half-sclerotome. Moreover, premature expression of EphA4 in MMC(m) neurons leads to a portion of their axons growing into novel ephrin-A5-positive territories. Together, these results indicate that EphA4-ephrin-A5 signaling acts in a positive manner to constrain MMC(m) axons to the rostral half-sclerotome. Furthermore, we show that Eph activation localizes to distinct subcellular compartments of LMC(l) and MMC(m) neurons, consistent with distinct EphA4 signaling cascades in these neuronal subpopulations.


PLOS Biology | 2004

An Integrin-Dependent Role of Pouch Endoderm in Hyoid Cartilage Development

Justin Gage Crump; Mary E. Swartz; Charles B. Kimmel

Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinα5 mutant in zebrafish that has region-specific losses of facial cartilages derived from hyoid neural crest cells. In addition, the cranial muscles that normally attach to the affected cartilage region and their associated nerve are secondarily reduced in integrinα5− animals. Earlier in development, integrinα5 mutants also have specific defects in the formation of the first pouch, an outpocketing of the pharyngeal endoderm. By fate mapping, we show that the cartilage regions that are lost in integrinα5 mutants develop from neural crest cells directly adjacent to the first pouch in wild-type animals. Furthermore, we demonstrate that Integrinα5 functions in the endoderm to control pouch formation and cartilage development. Time-lapse recordings suggest that the first pouch promotes region-specific cartilage development by regulating the local compaction and survival of skeletogenic neural crest cells. Thus, our results reveal a hierarchy of tissue interactions, at the top of which is the first endodermal pouch, which locally coordinates the development of multiple tissues in a specific region of the vertebrate face. Lastly, we discuss the implications of a mosaic assembly of the facial skeleton for the evolution of ray-finned fish.


Genesis | 2010

Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration

April DeLaurier; B. Frank Eames; Bernardo Blanco-Sánchez; Gang Peng; Xinjun He; Mary E. Swartz; Bonnie Ullmann; Monte Westerfield; Charles B. Kimmel

We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)‐mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into one cell‐stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP‐positive cells were also detected in adult fish, and were found associated with regenerating fin rays postamputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton. genesis 48:505–511, 2010.


Development | 2006

Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face

Justin Gage Crump; Mary E. Swartz; Johann K. Eberhart; Charles B. Kimmel

Development of the facial skeleton depends on interactions between intrinsic factors in the skeletal precursors and extrinsic signals in the facial environment. Hox genes have been proposed to act cell-intrinsically in skeletogenic cranial neural crest cells (CNC) for skeletal pattern. However, Hox genes are also expressed in other facial tissues, such as the ectoderm and endoderm, suggesting that Hox genes could also regulate extrinsic signalling from non-CNC tissues. Here we study moz mutant zebrafish in which hoxa2b and hoxb2a expression is lost and the support skeleton of the second pharyngeal segment is transformed into a duplicate of the first-segment-derived jaw skeleton. By performing tissue mosaic experiments between moz- and wild-type embryos, we show that Moz and Hox genes function in CNC, but not in the ectoderm or endoderm, to specify the support skeleton. How then does Hox expression within CNC specify a support skeleton at the cellular level? Our fate map analysis of skeletal precursors reveals that Moz specifies a second-segment fate map in part by regulating the interaction of CNC with the first endodermal pouch (p1). Removal of p1, either by laser ablation or in the itga5b926 mutant, reveals that p1 epithelium is required for development of the wild-type support but not the moz- duplicate jaw-like skeleton. We present a model in which Moz-dependent Hox expression in CNC shapes the normal support skeleton by instructing second-segment CNC to undergo skeletogenesis in response to local extrinsic signals.


PLOS Genetics | 2011

Mutations in fam20b and xylt1 Reveal That Cartilage Matrix Controls Timing of Endochondral Ossification by Inhibiting Chondrocyte Maturation

B. Frank Eames; Yi Lin Yan; Mary E. Swartz; Daniel S. Levic; Ela W. Knapik; John H. Postlethwait; Charles B. Kimmel

Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed “maturation,” when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.


Developmental Dynamics | 2011

Examination of a Palatogenic Gene Program in Zebrafish

Mary E. Swartz; Kelly Sheehan-Rooney; Michael J. Dixon; Johann K. Eberhart

Human palatal clefting is debilitating and difficult to rectify surgically. Animal models enhance our understanding of palatogenesis and are essential in strategies designed to ameliorate palatal malformations in humans. Recent studies have shown that the zebrafish palate, or anterior neurocranium, is under similar genetic control to the amniote palatal skeleton. We extensively analyzed palatogenesis in zebrafish to determine the similarity of gene expression and function across vertebrates. By 36 hours postfertilization (hpf) palatogenic cranial neural crest cells reside in homologous regions of the developing face compared with amniote species. Transcription factors and signaling molecules regulating mouse palatogenesis are expressed in similar domains during palatogenesis in zebrafish. Functional investigation of a subset of these genes, fgf10a, tgfb2, pax9, and smad5 revealed their necessity in zebrafish palatogenesis. Collectively, these results suggest that the gene regulatory networks regulating palatogenesis may be conserved across vertebrate species, demonstrating the utility of zebrafish as a model for palatogenesis. Developmental Dynamics 240:2204–2220, 2011.


Developmental Biology | 2011

Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens

Rachel K. Tittle; Ryan Sze; Anthony Ng; Richard J. Nuckels; Mary E. Swartz; Ryan M. Anderson; Justin A. Bosch; Didier Y. R. Stainier; Johann K. Eberhart; Jeffrey M. Gross

DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression. During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand through the action of Dnmt1 (DNA Methyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers express appropriate differentiation markers. The results of lens transplant experiments demonstrate that Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for vertebrate lens development and maintenance.


Development | 2013

Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD

Neil McCarthy; Leah Wetherill; C. Ben Lovely; Mary E. Swartz; Tatiana Foroud; Johann K. Eberhart

Human birth defects are highly variable and this phenotypic variability can be influenced by both the environment and genetics. However, the synergistic interactions between these two variables are not well understood. Fetal alcohol spectrum disorders (FASD) is the umbrella term used to describe the wide range of deleterious outcomes following prenatal alcohol exposure. Although FASD are caused by prenatal ethanol exposure, FASD are thought to be genetically modulated, although the genes regulating sensitivity to ethanol teratogenesis are largely unknown. To identify potential ethanol-sensitive genes, we tested five known craniofacial mutants for ethanol sensitivity: cyp26b1, gata3, pdgfra, smad5 and smoothened. We found that only platelet-derived growth factor receptor alpha (pdgfra) interacted with ethanol during zebrafish craniofacial development. Analysis of the PDGF family in a human FASD genome-wide dataset links PDGFRA to craniofacial phenotypes in FASD, prompting a mechanistic understanding of this interaction. In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural crest cell migration, whereas pdgfra heterozygotes develop normally. Ethanol-exposed pdgfra mutants have profound craniofacial defects that include the loss of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, ethanol treatment revealed latent haploinsufficiency, causing palatal defects in ∼62% of pdgfra heterozygotes. Neural crest apoptosis partially underlies these ethanol-induced defects in pdgfra mutants, demonstrating a protective role for Pdgfra. This protective role is mediated by the PI3K/mTOR pathway. Collectively, our results suggest a model where combined genetic and environmental inhibition of PI3K/mTOR signaling leads to variability within FASD.

Collaboration


Dive into the Mary E. Swartz's collaboration.

Top Co-Authors

Avatar

Johann K. Eberhart

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil McCarthy

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

C. Ben Lovely

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Sheehan-Rooney

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge