Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Ecke is active.

Publication


Featured researches published by Mary Ecke.


The EMBO Journal | 2001

Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis

Annette Müller-Taubenberger; Andrei N. Lupas; Hewang Li; Mary Ecke; Evelyn Simmeth; Günther Gerisch

Calreticulin and calnexin are Ca2+‐binding proteins with chaperone activity in the endoplasmic reticulum. These proteins have been eliminated by gene replacement in Dictyostelium, the only microorganism known to harbor both proteins; family members in Dictyostelium are located at the base of phylogenetic trees. A dramatic decline in the rate of phagocytosis was observed in double mutants lacking calreticulin and calnexin, whereas only mild changes occurred in single mutants. Dictyostelium cells are professional phagocytes, capable of internalizing particles by a sequence of activities: adhesion of the particle to the cell surface, actin‐dependent outgrowth of a phagocytic cup, and separation of the phagosome from the plasma membrane. In the double‐null mutants, particles still adhered to the cell surface, but the outgrowth of phagocytic cups was compromised. Green fluorescent protein‐tagged calreticulin and calnexin, expressed in wild‐type cells, revealed a direct link of the endoplasmic reticulum to the phagocytic cup enclosing a particle, such that the Ca2+ storage capacity of calreticulin and calnexin might directly modulate activities of the actin system during particle uptake.


Biophysical Journal | 2009

The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization

Till Bretschneider; Kurt I. Anderson; Mary Ecke; Annette Müller-Taubenberger; Britta Schroth-Diez; Hellen Ishikawa-Ankerhold; Günther Gerisch

Actin polymerization is typically initiated at specific sites in a cell by membrane-bound protein complexes, and the resulting structures are involved in specialized cellular functions, such as migration, particle uptake, or mitotic division. Here we analyze the potential of the actin system to self-organize into waves that propagate on the planar, substrate-attached membrane of a cell. We show that self-assembly involves the ordered recruitment of proteins from the cytoplasmic pool and relate the organization of actin waves to their capacity for applying force. Three proteins are shown to form distinct three-dimensional patterns in the actin waves. Myosin-IB is enriched at the wave front and close to the plasma membrane, the Arp2/3 complex is distributed throughout the waves, and coronin forms a sloping layer on top of them. CARMIL, a protein that links myosin-IB to the Arp2/3 complex, is also recruited to the waves. Wave formation does not depend on signals transmitted by heterotrimeric G-proteins, nor does their propagation require SCAR, a regulator upstream of the Arp2/3 complex. Propagation of the waves is based on an actin treadmilling mechanism, indicating a program that couples actin assembly to disassembly in a three-dimensional pattern. When waves impinge on the cell perimeter, they push the edge forward; when they reverse direction, the cell border is paralyzed. These data show that force-generating, highly organized supramolecular networks are autonomously formed in live cells from molecular motors and proteins controlling actin polymerization and depolymerization.


Science | 1996

Protection against osmotic stress by cGMP-mediated myosin phosphorylation

Hidekazu Kuwayama; Mary Ecke; Günther Gerisch; Pjm Vanhaastert

Conventional myosin functions universally as a generator of motive force in eukaryotic cells. Analysis of mutants of the microorganism Dictyostelium discoideum revealed that myosin also provides resistance against high external osmolarities. An osmo-induced increase of intracellular guanosine 3′,5′-monophosphate was shown to mediate phosphorylation of three threonine residues on the myosin tail, which caused a relocalization of myosin required to resist osmotic stress. This redistribution of myosin allowed cells to adopt a spherical shape and may provide physical strength to withstand extensive cell shrinkage in high osmolarities.


Cell Adhesion & Migration | 2009

Self-organizing actin waves as planar phagocytic cup structures.

G. Gerisch; Mary Ecke; Britta Schroth-Diez; Silke Gerwig; Ulrike Engel; Lucinda Maddera; Margaret Clarke

Actin waves that travel on the planar membrane of a substrate-attached cell underscore the capability of the actin system to assemble into dynamic structures by the recruitment of proteins from the cytoplasm. The waves have no fixed shape, can reverse their direction of propagation, and can fuse or divide. Actin waves separate two phases of the plasma membrane that are distinguished by their lipid composition. The area circumscribed by a wave resembles in its phosphoinositide content the interior of a phagocytic cup, leading us to explore the possibility that actin waves are in-plane phagocytic structures generated without the localized stimulus of an attached particle. Consistent with this view, wave-forming cells were found to exhibit a high propensity for taking up particles. Cells fed rod-shaped particles produced elongated phagocytic cups that displayed a zonal pattern that reflected in detail the actin and lipid pattern of free-running actin waves. Neutrophils and macrophages are known to spread on surfaces decorated with immune complexes, a process that has been interpreted as “frustrated” phagocytosis. We suggest that actin waves enable a phagocyte to scan a surface for particles that might be engulfed.


Hfsp Journal | 2009

Propagating waves separate two states of actin organization in living cells

Britta Schroth-Diez; Silke Gerwig; Mary Ecke; Reiner Hegerl; Stefan Diez; Günther Gerisch

Propagating actin waves are dynamic supramolecular structures formed by the self‐assembly of proteins within living cells. They are built from actin filaments together with single‐headed myosin, the Arp2/3 complex, and coronin in a defined three‐dimensional order. The function of these waves in structuring the cell cortex is studied on the substrate‐attached surface of Dictyostelium cells by the use of total internal reflection fluorescence “TIRF” microscopy. Actin waves separate two areas of the cell cortex from each other, which are distinguished by the arrangement of actin filaments. The Arp2/3 complex dominates in the area enclosed by a wave, where it has the capacity of building dendritic structures, while the proteins prevailing in the external area, cortexillin I and myosin‐II, bundle actin filaments and arrange them in antiparallel direction. Wave propagation is accompanied by transitions in the state of actin with a preferential period of 5 min. Wave generation is preceded by local fluctuations in actin assembly, some of the nuclei of polymerized actin emanating from clathrin‐coated structures, others emerging independently. The dynamics of phase transitions has been analyzed to provide a basis for modeling the nonlinear interactions that produce spatio‐temporal patterns in the actin system of living cells.


Biophysical Journal | 2012

PIP3 Waves and PTEN Dynamics in the Emergence of Cell Polarity

Günther Gerisch; Britta Schroth-Diez; Annette Müller-Taubenberger; Mary Ecke

In a motile eukaryotic cell, front protrusion and tail retraction are superimposed on each other. To single out mechanisms that result in front to tail or in tail to front transition, we separated the two processes in time using cells that oscillate between a full front and a full tail state. State transitions were visualized by total internal reflection fluorescence microscopy using as a front marker PIP3 (phosphatidylinositol [3,4,5] tris-phosphate), and as a tail marker the tumor-suppressor PTEN (phosphatase tensin homolog) that degrades PIP3. Negative fluctuations in the PTEN layer of the membrane gated a local increase in PIP3. In a subset of areas lacking PTEN (PTEN holes), PIP3 was amplified until a propagated wave was initiated. Wave propagation implies that a PIP3 signal is transmitted by a self-sustained process, such that the temporal and spatial profiles of the signal are maintained during passage of the wave across the entire expanse of the cell membrane. Actin clusters were remodeled into a ring along the perimeter of the expanding PIP3 wave. The reverse transition of PIP3 to PTEN was linked to the previous site of wave initiation: where PIP3 decayed first, the entry of PTEN was primed.


BMC Cell Biology | 2011

Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system

Günther Gerisch; Mary Ecke; Dirk Wischnewski; Britta Schroth-Diez

BackgroundIn a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile Dictyostelium cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate. To study de-novo cell polarization, we first depolymerized actin and subsequently recorded the spontaneous reorganization of actin patterns in relation to PTEN.ResultsIn a transient stage of recovery from depolymerization, symmetric actin patterns alternate periodically with asymmetric ones. The switches to asymmetry coincide with the unilateral membrane-binding of PTEN. The modes of state transitions in the actin and PTEN systems differ. Transitions in the actin system propagate as waves that are initiated at single sites by the amplification of spontaneous fluctuations. In PTEN-null cells, these waves still propagate with normal speed but loose their regular periodicity. Membrane-binding of PTEN is induced at the border of a coherent PTEN-rich area in the form of expanding and regressing gradients.ConclusionsThe state transitions in actin organization and the reversible transition from cytoplasmic to membrane-bound PTEN are synchronized but their patterns differ. The transitions in actin organization are independent of PTEN, but when PTEN is present, they are coupled to periodic changes in the membrane-binding of this PIP3-degrading phosphatase. The PTEN oscillations are related to motility patterns of chemotaxing cells.


Journal of Cell Science | 2014

Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state

Matthias Gerhardt; Mary Ecke; Michael Walz; Andreas Stengl; Carsten Beta; Günther Gerisch

ABSTRACT The membrane and actin cortex of a motile cell can autonomously differentiate into two states, one typical of the front, the other of the tail. On the substrate-attached surface of Dictyostelium discoideum cells, dynamic patterns of front-like and tail-like states are generated that are well suited to monitor transitions between these states. To image large-scale pattern dynamics independently of boundary effects, we produced giant cells by electric-pulse-induced cell fusion. In these cells, actin waves are coupled to the front and back of phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-rich bands that have a finite width. These composite waves propagate across the plasma membrane of the giant cells with undiminished velocity. After any disturbance, the bands of PIP3 return to their intrinsic width. Upon collision, the waves locally annihilate each other and change direction; at the cell border they are either extinguished or reflected. Accordingly, expanding areas of progressing PIP3 synthesis become unstable beyond a critical radius, their center switching from a front-like to a tail-like state. Our data suggest that PIP3 patterns in normal-sized cells are segments of the self-organizing patterns that evolve in giant cells.


Journal of Cell Science | 2013

Membrane and actin reorganization in electropulse-induced cell fusion

G. Gerisch; Mary Ecke; Ralph Neujahr; Jana Prassler; Andreas Stengl; Max Hoffmann; Ulrich Schwarz; Eberhard Neumann

Summary When cells of Dictyostelium discoideum are exposed to electric pulses they are induced to fuse, yielding motile polykaryotic cells. By combining electron microscopy and direct recording of fluorescent cells, we have studied the emergence of fusion pores in the membranes and the localization of actin to the cell cortex. In response to electric pulsing, the plasma membranes of two contiguous cells are turned into tangles of highly bent and interdigitated membranes. Live-imaging of cells double-labeled for membranes and filamentous actin revealed that actin is induced to polymerize in the fusion zone to temporarily bridge the gaps in the vesiculating membrane. The diffusion of green fluorescent protein (GFP) from one fusion partner to the other was scored using spinning disc confocal microscopy. Fusion pores that allowed intercellular exchange of GFP were formed after a delay, which lasted up to 24 seconds after exposure of the cells to the electric field. These data indicate that the membranes persist in a fusogenic state before pores of about 3 nm diameter are formed.


Biophysical Journal | 2014

Reversible Membrane Pearling in Live Cells upon Destruction of the Actin Cortex

Doris Heinrich; Mary Ecke; Marion Jasnin; Ulrike Engel; Günther Gerisch

Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ~40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II. Pearling thus differs from blebbing. The pearling state is stable as long as actin is prevented from polymerizing. When polymerization is restored, the pearls are retracted into the cell, indicating continuity of the membrane. Our data suggest that the alternation of pearls and strings is an energetically favored state of the unsupported plasma membrane, and that one of the functions of the actin cortex is to prevent the membrane from spontaneously assuming this configuration.

Collaboration


Dive into the Mary Ecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge