Mary Helen M. Goldsmith
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Helen M. Goldsmith.
Planta | 1983
George W. Bates; Mary Helen M. Goldsmith
We have compared the effects of the auxin, indole-3-acetic acid (IAA) with that of other weak acids on the plasma-membrane potential of oat (Avena sativa L.) coleoptile cells. Cells treated with 1 μM IAA at pH 6 depolarize 20–25 mV in 10–12 min, but they then repolarize, until by 20–25 min their potentials are about 25 mV more negative than the initial value. Similar concentrations of benzoic and butyric acids cause the initial depolarization, but not the subsequent hyperpolarization. The hyperpolarization is therefore specific to IAA. All the weak acids, including IAA, evoke a rapid hyperpolarization when their concentrations are raised to 10 mM. This result indicates that at high concentrations, the uptake of undissociated weak acids activates electrogenic proton pumping, most likely by lowering cytoplasmic pH. In contrast, the hyperpolarization observed with concentrations of IAA four orders of magnitude lower appears to be a specific hormonal effect. This specific, auxin-induced hyperpolarization occurs at the same time as the initiation of net proton secretion and supports the hypothesis that auxin initiates extension growth by increasing proton pumping.
The Plant Cell | 1993
Edgar P. Spalding; Mary Helen M. Goldsmith
Light activates a K+ channel and transiently depolarizes the plasma membrane of Arabidopsis mesophyll cells. Genetically or chemically impairing photosynthesis abolished this electrical response to light. These results indicate that illuminated chloroplasts produce a factor that activated K+ channels in the plasma membrane. By patch clamping at the single-channel level, we have obtained evidence that ATP is one such factor. Application of 0.2 to 2 mM ATP to the cytoplasmic side of excised patches of membrane reversibly activated the type of channel that was activated by light in cell-attached patches. In addition, an outward-rectifying K+ channel and an outward-rectifying nonselective cation channel were similarly activated by ATP, whereas a nonselective stretch-activated channel was unaffected by this treatment. This novel mechanism for controlling the permeability of the plasma membrane to K+ may be important to photosynthetic metabolism.
Planta | 1981
Michael R. Sussman; Mary Helen M. Goldsmith
The validity of a chemiosmotic hypothesis for uptake of weak acids as an explanation for the accumulation of auxin by cells has been explored further by comparing the uptake of indole-3-acetic acid (IAA) by 1-mm segments of corn (Zea mays L.) coleoptiles with that of benzoic acid and two neutral indoles, indoleethanol and indoleacetonitrile, which do not ionize. These substances, while structurally related to IAA lack both auxin activity and polar transport. Uptake of IAA and benzoic acid increase with decreasing external pH, whereas the uptake of the two neutral indoles is independent of external pH.Although metabolism of IAA, during 90 min or less, is minimal and without significant effect on its uptake, metabolism of benzoic acid appears responsible for the apparent saturation of benzoic acid uptake at high concentrations. An inhibitor of auxin transport, N-1-naphthylphathalamic acid (NPA), stimulates uptake of IAA but has no effect on uptake of either benzoic acid or the two neutral indoles. Thus, NPA does not affect the driving forces for accumulation of weak acids but probably specifically decreases the flux of the auxin anions relative to undissociated auxin. Since the electrochemical potential of auxin anions is usually higher in than outside cells, blocking the anion flux with NPA would enhance auxin uptake. Azide, which abolishes accumulation of both IAA and benzoic acid, may simply collapse the pH gradient across the plasma membrane.In the absence of NPA, increasing concentrations of auxins or the analogoue β-naphthaleneacetic acid (β-NAA) exert two opposing effects on the uptake of IAA-depression and stimulation. Stimulation results from saturating the anion flux. With uptake fully stimulated by NPA, however, increasing concentrations of auxins or analogues only depress uptake of [3H]IAA. These results are consistent with more than one path for auxin transport each with a different dependence on concentration. In depressing NPA-stimulated IAA uptake, the effectiveness of β-NAA≧IAA≫α-NAA≫ benzoic acid, a specificity similar to that of an auxin binding site in vitro that has been implicated by others in auxin transport. The results support the general hypothesis that cellular auxin uptake and polar transport through tissues are chemiosmotically coupled to the electrochemical potential of auxin and protons.
Planta | 1981
Michael R. Sussman; Mary Helen M. Goldsmith
Using both 1-mm segments of corn (Zea mays L.) coleoptiles and a preparation of membranes isolated from the same source, we have compared the effectiveness of several inhibitors of geotropism and polar transport in stimulating uptake of auxin (indole-3-acetic acid, IAA) into the tissue and in competing with N-1-naphthylphthalamic acid (NPA) for a membrane-bound site. Low concentrations of 2,3,5-triiodobenzoic acid (TIBA), NPA, 2-chloro-9-hydroxyfluorene-9-carboxylic acid (morphactin), and fluorescein, eosin, and mercurochrome all stimulated net uptake of [3H]IAA by corn coleoptile tissues while higher concentrations reduced the uptake of both [3H]IAA and another lipophilic weak acid, [14C]benzoic acid. Since low concentrations of fluorescein and its derivatives competed for the same membrane-bound site in vitro as did morphactin and NPA, the basis for both the specific stimulation of auxin accumulation and the inhibition of polar auxin transport by all these compounds may be their ability to interfere with the carrier-mediated efflux of auxin anions from cells. At higher concentrations, the decrease in accumulation of weak acids was nonspecific and thus may be the result of acidification of the cytoplasm and a general decrease in the driving force for uptake of the weak acids. Triiodobenzoic acid was an exception. Low concentration of TIBA (0.1–1 μM) were much less effective than NPA in competing for the NPA receptor in vitro, but little different from NPA in ability to stimulate auxin uptake. One possibility is that TIBA, a substance which is polarly transported, may compete with auxin for the polar transport site while NPA, morphactin, and the fluorescein derivatives may render this site inactive.
Planta | 1982
Mary Helen M. Goldsmith
The velocity of transport and shape of a pulse of radioactive indole-3-acetic acid (IAA) applied to a section of maize (Zea mays L.) coleoptile depends strongly on the concentration of nonradioactive auxin in which the section has been incubated before, during, and after the radioactive pulse. A pulse of [3H]IAA disperses slowly in sections incubated in buffer (pH 6) alone; but when 0.5–5 μM IAA is included, the pulse achieves its maximum velocity of about 2 cm h-1. At still higher IAA concentrations in the medium, a transition occurs from a discrete, downwardly migrating pulse to a slowly advancing profile. Specificity of IAA in the latter effect is indicated by the observation that benzoic acid, which is taken up to an even greater extent than IAA, does not inhibit movement of [3H]IAA. These results fully substantiate the hypothesis that auxin transport consists of a saturable flux of auxin anions (A-) in parallel with a nonsaturable flux of undissociated IAA (HA), with both fluxes operating down their respective concentration gradients. When the anion site saturates, the movement of [3H]IAA is nonpolar and dominated by the diffusion of HA. Saturating polar transport also results in greater cellular accumulation of auxin, indicating that the same site mediates the cellular efflux of A-. The transport inhibitors napthylphthalamic acid and 2,3,5-triiodobenzoic acid specifically block the polar A- component of auxin transport without affecting the nonsaturable component. The transport can be saturated at any point during its passage through the section, indicating that the carriers are distributed throughout the tissue, most likely in the plasmalemma of each cell.
Planta | 1974
Mary Helen M. Goldsmith; Dominic A. Cataldo; Jonathan Karn; Terry Brenneman; Pieter Trip
SummaryIndole-3-acetic acid (IAA) is transported from a nearly mature leaf throughout an intact Coleus blumei Benth. plant in the phloem. A buffered solution of both 14C-methylene-labeled indoleacetic acid ([14C]IAA) and [6-3H]glucose was supplied in a glass capillary to the distal end of a severed main lateral vein of the leaf. Both labeled sugar and auxin move rapidly through the plant at velocities of ca. 16–20 cm h-1 with closely similar, exponential profiles. This translocation is nonpolar; both auxin and sugar move upwards to the apex and young expanding leaves as well as downwards to the base of the shoot. Neither tracer appears in mature leaves; this eliminates the possibility that they enter the xylem. At the end of the transport period, 80–90% of the radioactivity recovered from various portions of the plants supplied with [14C]IAA is still identical chromatographically with IAA. In microautoradiographs prepared by techniques that minimize loss and redistribution of soluble compounds, radioactivity from [3H]IAA is concentrated in the phloem of the midrib and petiole of the fed leaf. A ring of triiodobenzoic acid (TIBA) strongly inhibits the polar auxin transport in sections isolated from the ringed region but does not significantly affect auxin translocation in the phloem of intact plants. TIBA does, however, reduce the entry of auxin into the collecting veins of the leaf. Thus steps in auxin transport sensitive to TIBA may occur during transfer through the leaf or into the phloem, but not during long distance translocation in the phloem.
Planta | 1980
Kathryn L. Edwards; Mary Helen M. Goldsmith
The uptake of auxin by 1-mm slices of corn (Zea mays L.) coleoptiles, a tissue known to transport auxin polarly, depends on the pH of the medium. Short-term uptake of indole-3-acetic acid (IAA) in coleoptiles increases with decreasing pH of the buffer as would be expected if the undissociated weak acid, IAA·H, were more permeable than the auxin anion, IAA-, and IAA- accumulates in the tissues because of the higher pH of the cytoplasm. Although uptake of [3H]IAA is reduced in neutral buffers, it is greater than expected if it were limited to just the extracellular space of the tissue. The radioactivity accumulated by the tissue can be quantitatively extracted by organic solvents and identified as IAA by thin-layer chromatography. The tissue radioactivity is freely mobile and can efflux from the tissue. Thus these cells in pH 5 buffer are able to retain an average internal concentration of mobile IAA that is at least several times greater than the external concentration. A prominent feature of auxin uptake from acidic buffers is enhanced accumulation at high auxin concentration. This indicates that, in addition to fluxes of IAA·H, a saturable site is involved in auxin uptake. Whenever the auxin-anion gradient is directed outward, saturating the efflux of auxin anions increases accumulation. Furthermore, the observed slowing of short-term uptake of radioactive IAA by increasing concentrations of IAA or K+ indicates either an activation of the presumptive auxin leak or saturation of another carrier-mediated uptake system such as a symport of auxin anions with protons. By contrast in neutral buffers, effects of concentration on uptake rates disappear. This implies that at neutral pH the anion leak is decreased and influx depends on the symport.
The Journal of Membrane Biology | 1982
George W. Bates; Mary Helen M. Goldsmith; Timothy H. Goldsmith
SummaryMembrane potential and resistance were recorded from parenchymal cells of oat (Avena) coleoptiles, using one and two intracellular electrodes. Membrane potential is largest (−100 mV) in impalements with low input resistance (2–4 MΩ), and is less negative (−50 mV) in penetrations with high input resistance (> 20 mΩ). The interpretation is that the electrode lodges in the vacuole which is positive to the cytoplasm (but still negative to the external solution), and that measurements of net membrane potential are compromised to varying degrees by leakage shunts introduced across the high resistance vacuolar membrane by the electrode. This conclusion is supported by several additional lines of evidence. (1) It is possible to convert large-R/small-V impalements into small-R/large-V penetrations by passing excess current through the electrode or by briefly ‘ringing’ the capacitance neutralization circuit in the amplifier. The cells usually recover their resistance in a few minutes, with a concomitant decrease in the negativity of the membrane potential. (2) Changes in external [K] affect the measuree potential by an amount that is independent of the input resistance of the impalement. This is consistent with an effect of [K]o on the potential of the plasma membrane and the occurrence of leakage shunts primarily at the tonoplast. (3) Quantitatively, the effects of a change in [K]o on resistance indicate that nearly 90 percent of the input resistance of unshunted cells resides in the tonoplast. (4) The effects of metabolic inhibitors (DNP, CN−) on potential are smaller in large-R than in small-R impalements. This observation suggests there are electrogenic pumps contributing to the membrane potential at both the plasmalemma and tonoplast. Finally, we conclude that with an electrode in the vacuole it is possible to record potentials that are dominated by the contribution of the plasma membrane, provided care is taken to select impalements combining both large, negative potential and low input resistance.
Planta | 1970
Michael S. Greenwood; Mary Helen M. Goldsmith
SummaryThe relation of indoleacetic acid (IAA) transport to accumulation of auxin at the base of cuttings and to polar root formation was investigated with small cuttings from germinating embryos of Pinus lambertiana.The transport of endogenous auxin participates in regeneration of roots. This is shown by the facts that (1) more than 40% of the cuttings rooted without addition of exogenous indoleacetic acid; (2) the first regeneration always occurred at the basal tip of a slanting cut; and (3) 2,3,5-triiodobenzoic acid (TIBA), a specific inhibitor of auxin transport, totally inhibited rooting. Addition of IAA to the medium increased the number of roots formed per rooting hypocotyl.Sections of hypocotyls excised from dormant embryos and tested immediately after 2 h hydration were capable of polar transport of IAA. This polarity increased during the first 3 days of culture because of a marked increase in basipetal transport. Culturing the cuttings in 1 μM IAA for 3–5 days doubled both the basipetal transport of 1-14C-IAA by hypocotyl segments and the accumulation of radioactivity at the base of cuttings.The extent of the accumulation at the base of cuttings was similar at early (2 days, first mitoses) and late stages (5 days, organized meristem) of regeneration and was not affected by removal of the regenerating region immediately prior to uptake and transport of 14C-IAA. The accumulation was inhibited by TIBA. In terms of increase in wet and dry weight and mitotic activity, the cotyledons rather than the regenerating root meristems were the most actively growing region of the cuttings. The upper part of the hypocotyl elongated more than the region of the slanting cut where regeneration was occurring.These results provide no support for the idea that the regenerating root controls the direction of polar transport by acting as a sink. The results are consistent with the view that polar auxin transport delivers auxin to the base of the cutting and raises the local concentration to levels sufficient to promote root formation.
Planta | 1973
Mary Helen M. Goldsmith; Peter M. Ray
SummaryThe cytoplasm of maize coleoptile cells was displaced to either the apical or basal ends of the cells by centrifuging (1750xg for 10 min) segments in which protoplasmic streaming had been stopped by pretreatment with cytochalasin B. Centrifugation toward the base of the segment promotes the subsequent basipetal transport of indole-3-acetic acid, whereas apical centrifugation dramatically inhibits this transport. Apical centrifugation neither promotes acropetal transport nor reverses the polarity of auxin transport. Experiments in which the amyloplasts were separated from the bulk of the cytoplasm indicate that the basipetal transport is independent of both the position and pressure exerted by the amyloplasts but is strongly dependent on the amount of cytoplasm at the basal end of the cells. These effects of centrifugation on auxin transport lead to the conclusion that the metabolic component of the transport is a polar secretion of auxin localized in the basal plasma membrane of each cell.