Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Hongying Cheng is active.

Publication


Featured researches published by Mary Hongying Cheng.


The Journal of General Physiology | 2009

Molecular Basis for Cation Selectivity in Claudin-2―based Paracellular Pores: Identification of an Electrostatic Interaction Site

Alan S. L. Yu; Mary Hongying Cheng; Susanne Angelow; Dorothee Günzel; Sanae A. Kanzawa; Eveline E. Schneeberger; Michael Fromm; Rob D. Coalson

Paracellular ion transport in epithelia is mediated by pores formed by members of the claudin family. The degree of selectivity and the molecular mechanism of ion permeation through claudin pores are poorly understood. By expressing a high-conductance claudin isoform, claudin-2, in high-resistance Madin-Darby canine kidney cells under the control of an inducible promoter, we were able to quantitate claudin pore permeability. Claudin-2 pores were found to be narrow, fluid filled, and cation selective. Charge selectivity was mediated by the electrostatic interaction of partially dehydrated permeating cations with a negatively charged site within the pore that is formed by the side chain carboxyl group of aspartate-65. Thus, paracellular pores use intrapore electrostatic binding sites to achieve a high conductance with a high degree of charge selectivity.


PLOS Computational Biology | 2014

Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model.

Avisek Das; Mert Gur; Mary Hongying Cheng; Sunhwan Jo; Ivet Bahar; Benoît Roux

Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results.


Biophysical Journal | 2010

Anesthetic Binding in a Pentameric Ligand-Gated Ion Channel: GLIC

Qiang Chen; Mary Hongying Cheng; Yan Xu; Pei Tang

Cys-loop receptors are molecular targets of general anesthetics, but the knowledge of anesthetic binding to these proteins remains limited. Here we investigate anesthetic binding to the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), a structural homolog of cys-loop receptors, using an experimental and computational hybrid approach. Tryptophan fluorescence quenching experiments showed halothane and thiopental binding at three tryptophan-associated sites in the extracellular (EC) domain, transmembrane (TM) domain, and EC-TM interface of GLIC. An additional binding site at the EC-TM interface was predicted by docking analysis and validated by quenching experiments on the N200W GLIC mutant. The binding affinities (K(D)) of 2.3 ± 0.1 mM and 0.10 ± 0.01 mM were derived from the fluorescence quenching data of halothane and thiopental, respectively. Docking these anesthetics to the original GLIC crystal structure and the structures relaxed by molecular dynamics simulations revealed intrasubunit sites for most halothane binding and intersubunit sites for thiopental binding. Tryptophans were within reach of both intra- and intersubunit binding sites. Multiple molecular dynamics simulations on GLIC in the presence of halothane at different sites suggested that anesthetic binding at the EC-TM interface disrupted the critical interactions for channel gating, altered motion of the TM23 linker, and destabilized the open-channel conformation that can lead to inhibition of GLIC channel current. The study has not only provided insights into anesthetic binding in GLIC, but also demonstrated a successful fusion of experiments and computations for understanding anesthetic actions in complex proteins.


Biophysical Journal | 2013

Coupled Global and Local Changes Direct Substrate Translocation by Neurotransmitter-Sodium Symporter Ortholog LeuT

Mary Hongying Cheng; Ivet Bahar

Significant advances have been made in recent years in characterizing neurotransmitter:sodium symporter (NSS) family structure and function. Yet, many time-resolved events and intermediates that control the various stages of transport cycle remain to be elucidated. Whether NSSs harbor one or two sites for binding their substrates (neurotransmitters or amino acids), and what the role of the secondary site S2 is, if any, are still unresolved. Using molecular modeling and simulations for LeuT, a bacterial NSS, we present a comprehensive account of substrate-binding and -stabilization events, and subsequently triggered interactions leading to substrate (alanine) release. LeuT instantaneous conformation as it reconfigures from substrate-receiving (outward-facing) to -releasing (inward-facing) state appears to be a determinant of its affinity to bind substrate at site S2. In the outward-facing state, S1 robustly binds alanine and regulates subsequent redistribution of interactions to trigger extracellular gate closure; whereas S2 is only a transient binding site. The substrate-binding affinity at S2 increases in an intermediate close to inward-facing state. LeuT harbors the two substrate-binding sites, and small displacements of second substrate near S2 are observed to induce concerted small translocations in the substrate bound to primary site S1, although complete release requires collective structural rearrangements that fully expose the intracellular vestibule to the cytoplasm.


PLOS Computational Biology | 2014

Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle.

Mary Hongying Cheng; Ivet Bahar

Neurotransmitter: sodium symporters (NSSs) regulate neuronal signal transmission by clearing excess neurotransmitters from the synapse, assisted by the co-transport of sodium ions. Extensive structural data have been collected in recent years for several members of the NSS family, which opened the way to structure-based studies for a mechanistic understanding of substrate transport. Leucine transporter (LeuT), a bacterial orthologue, has been broadly adopted as a prototype in these studies. This goal has been elusive, however, due to the complex interplay of global and local events as well as missing structural data on LeuT N-terminal segment. We provide here for the first time a comprehensive description of the molecular events leading to substrate/Na+ release to the postsynaptic cell, including the structure and dynamics of the N-terminal segment using a combination of molecular simulations. Substrate and Na+-release follows an influx of water molecules into the substrate/Na+-binding pocket accompanied by concerted rearrangements of transmembrane helices. A redistribution of salt bridges and cation-π interactions at the N-terminal segment prompts substrate release. Significantly, substrate release is followed by the closure of the intracellular gate and a global reconfiguration back to outward-facing state to resume the transport cycle. Two minimally hydrated intermediates, not structurally resolved to date, are identified: one, substrate-bound, stabilized during the passage from outward- to inward-facing state (holo-occluded), and another, substrate-free, along the reverse transition (apo-occluded).


Journal of the American Chemical Society | 2013

Asymmetric Ligand Binding Facilitates Conformational Transitions in Pentameric Ligand-Gated Ion Channels

David D. Mowrey; Mary Hongying Cheng; Lu Tian Liu; Dan Willenbring; Xinghua Lu; Troy Wymore; Yan Xu; Pei Tang

The anesthetic propofol inhibits the currents of the homopentameric ligand-gated ion channel GLIC, yet the crystal structure of GLIC with five propofol molecules bound symmetrically shows an open-channel conformation. To address this dilemma and determine if the symmetry of propofol binding sites affects the channel conformational transition, we performed a total of 1.5 μs of molecular dynamics simulations for different GLIC systems with propofol occupancies of 0, 1, 2, 3, and 5. GLIC without propofol binding or with five propofol molecules bound symmetrically, showed similar channel conformation and hydration status over multiple replicates of 100-ns simulations. In contrast, asymmetric binding to one, two or three equivalent sites in different subunits accelerated the channel dehydration, increased the conformational heterogeneity of the pore-lining TM2 helices, and shifted the lateral and radial tilting angles of TM2 toward a closed-channel conformation. The results differentiate two groups of systems based on the propofol binding symmetry. The difference between symmetric and asymmetric groups is correlated with the variance in the propofol-binding cavity adjacent to the hydrophobic gate and the force imposed by the bound propofol. Asymmetrically bound propofol produced greater variance in the cavity size that could further elevate the conformation heterogeneity. The force trajectory generated by propofol in each subunit over the course of a simulation exhibits an ellipsoidal shape, which has the larger component tangential to the pore. Asymmetric propofol binding creates an unbalanced force that expedites the channel conformation transitions. The findings from this study not only suggest that asymmetric binding underlies the propofol functional inhibition of GLIC, but also advocate for the role of symmetry breaking in facilitating channel conformational transitions.


Journal of the American Chemical Society | 2010

Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

Mary Hongying Cheng; Rob D. Coalson; Pei Tang

Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.


Structure | 2015

Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter.

Mary Hongying Cheng; Ivet Bahar

Dopamine transporters (DATs) control neurotransmitter dopamine (DA) homeostasis by reuptake of excess DA, assisted by sodium and chloride ions. The recent resolution of DAT structure (dDAT) from Drosophila permits us for the first time to directly view the sequence of events involved in DA reuptake in human DAT (hDAT) using homology modeling and full-atomic microseconds accelerated simulations. Major observations are spontaneous closure of extracellular gates prompted by DA binding; stabilization of a holo-occluded intermediate; disruption of N82-N353 hydrogen bond and exposure to intracellular (IC) water triggered by Na2 dislocation; redistribution of a network of salt bridges at the IC surface in the inward-facing state; concerted tilting of IC-exposed helices to enable the release of Na(+) and Cl(-) ions; and DA release after protonation of D79. The observed time-resolved interactions confirm the conserved dynamics of LeuT-fold family, while providing insights into the mechanistic role of specific residues in hDAT.


Biophysical Journal | 2012

Molecular Dynamics Investigation of Cl− and Water Transport through a Eukaryotic CLC Transporter

Mary Hongying Cheng; Rob D. Coalson

Early crystal structures of prokaryotic CLC proteins identified three Cl(-) binding sites: internal (S(int)), central (S(cen)), and external (S(ext)). A conserved external GLU (GLU(ex)) residue acts as a gate competing for S(ext). Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLU(ex) competes instead for S(cen). Here, we use molecular dynamics simulations to investigate Cl(-) transport through CmCLC. The gating and Cl(-)/H(+) transport cycle are inferred through comparative molecular dynamics simulations with protonated and deprotonated GLU(ex) in the presence/absence of external potentials. Adaptive biasing force calculations are employed to estimate the potential of mean force profiles associated with transport of a Cl(-) ion from S(ext) to S(int), depending on the Cl(-) occupancy of other sites. Our simulations demonstrate that protonation of GLU(ex) is essential for Cl(-) transport from S(ext) to S(cen). The S(cen) site may be occupied by two Cl(-) ions simultaneously due to a high energy barrier (∼8 Kcal/mol) for a single Cl(-) ion to translocate from S(cen) to S(int). Binding two Cl(-) ions to S(cen) induces a continuous water wire from S(cen) to the extracellular solution through the side chain of the GLU(ex) gate. This may initiate deprotonation of GLU(ex), which then drives the two Cl(-) ions out of S(cen) toward the intracellular side via two putative Cl(-) transport paths. Finally, a conformational cycle is proposed that would account for the exchange stoichiometry.


Proteins | 2007

Homology modeling and molecular dynamics simulations of the α1 glycine receptor reveals different states of the channel

Mary Hongying Cheng; Michael Cascio; Rob D. Coalson

Homology modeling is used to build initial models of the transmembrane domain of the human α1 glycine receptor (GlyR) based on the most recently published refined structure of nAChR (PDB ID: 2BG9). Six preliminary GlyR models are constructed using two different approaches. In one approach, five different homopentamers are built by symmetric assembly of α1 GlyR subunits using only one of the five unique chains of nAChR as a template. In a second approach, each nAChR subunit serves as a template for an α1 GlyR subunit. All six initial GlyR constructs are then embedded into a hydrated POPC lipid bilayer and subjected to molecular dynamics simulation for at least six nanoseconds. Each model is stable throughout the simulation, and the final models fall into three distinct categories. Homopentameric GlyR bundles using a single α nAChR subunit as a template appear to be in an open conformation. Under an applied external potential, permeation of Cl− ions is observed within several ns in a channel built on an α chain. Model channels built on non‐α chains have a constriction either near the intracellular mouth or more centrally located in the pore domain, both of which may be narrow enough to close the channel and whose locations correspond to putative gates observed in nicotinicoid receptors. The differences between these three general models suggest that channel closure may be effected by either rotation or tangential tilting of TM2. Proteins 2007.

Collaboration


Dive into the Mary Hongying Cheng's collaboration.

Top Co-Authors

Avatar

Ivet Bahar

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Rob D. Coalson

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Pei Tang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yan Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cihan Kaya

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mert Gur

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge