Mary Isabel Gonzatti
Simón Bolívar University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Isabel Gonzatti.
PLOS Neglected Tropical Diseases | 2013
Philippe Truc; Philippe Büscher; Gérard Cuny; Mary Isabel Gonzatti; Jean Jannin; Prashant P. Joshi; Prayag Juyal; Zhao-Rong Lun; Raffaele C. Mattioli; Etienne Pays; Pere P. Simarro; Marta Maria Geraldes Teixeira; Louis Touratier; Philippe Vincendeau; Marc Desquesnes
The two classical forms of human trypanosomoses are sleeping sickness due to Trypanosoma brucei gambiense or T. brucei rhodesiense, and Chagas disease due to T. cruzi. However, a number of atypical human infections caused by other T. species (or sub-species) have been reported, namely due to T. brucei brucei, T. vivax, T. congolense, T. evansi, T. lewisi, and T. lewisi-like. These cases are reviewed here. Some infections were transient in nature, while others required treatments that were successful in most cases, although two cases were fatal. A recent case of infection due to T. evansi was related to a lack of apolipoprotein L-I, but T. lewisi infections were not related to immunosuppression or specific human genetic profiles. Out of 19 patients, eight were confirmed between 1974 and 2010, thanks to improved molecular techniques. However, the number of cases of atypical human trypanosomoses might be underestimated. Thus, improvement, evaluation of new diagnostic tests, and field investigations are required for detection and confirmation of these atypical cases.
PLOS ONE | 2012
Laurence Flori; Mary Isabel Gonzatti; Sophie Thevenon; Isabelle Chantal; Joar Pinto; David Berthier; Pedro María Aso; Mathieu Gautier
Background The Senepol cattle breed (SEN) was created in the early XXth century from a presumed cross between a European (EUT) breed (Red Poll) and a West African taurine (AFT) breed (N’Dama). Well adapted to tropical conditions, it is also believed trypanotolerant according to its putative AFT ancestry. However, such origins needed to be verified to define relevant husbandry practices and the genetic background underlying such adaptation needed to be characterized. Methodology/Principal Findings We genotyped 153 SEN individuals on 47,365 SNPs and combined the resulting data with those available on 18 other populations representative of EUT, AFT and Zebu (ZEB) cattle. We found on average 89% EUT, 10.4% ZEB and 0.6% AFT ancestries in the SEN genome. We further looked for footprints of recent selection using standard tests based on the extent of haplotype homozygosity. We underlined i) three footprints on chromosome (BTA) 01, two of which are within or close to the polled locus underlying the absence of horns and ii) one footprint on BTA20 within the slick hair coat locus, involved in thermotolerance. Annotation of these regions allowed us to propose three candidate genes to explain the observed signals (TIAM1, GRIK1 and RAI14). Conclusions/Significance Our results do not support the accepted concept about the AFT origin of SEN breed. Initial AFT ancestry (if any) might have been counter-selected in early generations due to breeding objectives oriented in particular toward meat production and hornless phenotype. Therefore, SEN animals are likely susceptible to African trypanosomes which questions the importation of SEN within the West African tsetse belt, as promoted by some breeding societies. Besides, our results revealed that SEN breed is predominantly a EUT breed well adapted to tropical conditions and confirmed the importance in thermotolerance of the slick locus.
Veterinary Parasitology | 2009
Trina Perrone; Mary Isabel Gonzatti; G. Villamizar; Ananias A. Escalante; Pedro María Aso
Nine Trypanosoma sp. Venezuelan isolates, initially presumed to be T. evansi, were collected from three different hosts, capybara (Apure state), horse (Apure state) and donkey (Guarico state) and compared by the random amplification polymorphic DNA technique (RAPD). Thirty-one to 46 reproducible fragments were obtained with 12 of the 40 primers that were used. Most of the primers detected molecular profiles with few polymorphisms between the seven horse, capybara and donkey isolates. Quantitative analyses of the RAPD profiles of these isolates revealed a high degree of genetic conservation with similarity coefficients between 85.7% and 98.5%. Ten of the primers generated polymorphic RAPD profiles with two of the three Trypanosoma sp. horse isolates, namely TeAp-N/D1 and TeGu-N/D1. The similarity coefficient between these two isolates and the rest, ranged from 57.9% to 68.4% and the corresponding dendrogram clustered TeAp-N/D1 and Te Gu-N/D1 in a genetically distinct group.
PLOS ONE | 2014
Regassa Fikru; A Hagos; Stijn Rogé; Armando Reyna-Bello; Mary Isabel Gonzatti; Bekana Merga; Bruno Goddeeris; Philippe Büscher
A study was conducted to develop a Trypanosoma vivax (T. vivax) specific PCR based on the T. vivax proline racemase (TvPRAC) gene. Forward and reverse primers were designed that bind at 764–783 bp and 983–1002 bp of the gene. To assess its specificity, TvPRAC PCR was conducted on DNA extracted from different haemotropic pathogens: T. vivax from Nigeria, Ethiopia and Venezuela, T. congolense Savannah type, T. brucei brucei, T. evansi, T. equiperdum, T. theileri, Theileria parva, Anaplasma marginale, Babesia bovis and Babesia bigemina and from bovine, goat, mouse, camel and human blood. The analytical sensitivity of the TvPRAC PCR was compared with that of the ITS-1 PCR and the 18S PCR-RFLP on a dilution series of T. vivax DNA in water. The diagnostic performance of the three PCRs was compared on 411 Ethiopian bovine blood specimens collected in a former study. TvPRAC PCR proved to be fully specific for T. vivax, irrespective of its geographical origin. Its analytical sensitivity was lower than that of ITS-1 PCR. On these bovine specimens, TvPRAC PCR detected 8.3% T. vivax infections while ITS-1 PCR and 18S PCR-RFLP detected respectively 22.6 and 6.1% T. vivax infections. The study demonstrates that a proline racemase based PCR could be used, preferably in combination with ITS-1 PCR, as a species-specific diagnostic test for T. vivax infections worldwide.
Archive | 2014
Mary Isabel Gonzatti; Bernardo González-Baradat; Pedro María Aso; Armando Reyna-Bello
The disease caused by T. vivax is commonly called Nagana in Africa and “secadera/cachera/cacho hueco/huequera” in parts of South America. This chapter will focus on the disease and its causative agent, reviewing new diagnostic methods, economic impact, chemotherapy, phylogenetic analysis of T. vivax isolates from Africa and South America, epidemiological studies in Latin America, and the analysis of recent genomic and transcriptomic data. T. vivax has a significant economic impact on livestock production in sub-Saharan Africa, where it is transmitted by the tsetse fly, and elsewhere in the African continent and in Central and South America, where it is transmitted mechanically. T. vivax is enzootic in most Latin American countries, and recurrent epizootic outbreaks causing significant morbidity and mortality have been reported over the past decades. Several significant landmarks in T. vivax research have been achieved in the last 2 years, including the publication of high-quality draft genome sequences and partial RNA-seq data for the Y486 strain, as well as the complete transcriptome of the LIEM-176 strain. Comparative analysis of the T. vivax, T. brucei, and T. congolense genomes revealed important differences in the surface proteins responsible for host immune response evasion in these species, and data from the T. vivax LIEM-76 transcriptome support the participation of other surface proteins, in addition to the VSG, in immune evasion. Proteins of the trans-sialidase family have been identified as important virulence factors that catalyze the desialylation of the host red blood cell, which in turn triggers the erythrophagocytosis that results in anemia. These findings will provide novel tools to tackle the challenge of controlling animal trypanosomosis caused by T. vivax in the developing world.
Parasitology International | 2002
Maritza Calabokis; Liliana Kurz; Jeff Wilkesman; José Manuel Galán-Caridad; Carolina Möller; Mary Isabel Gonzatti; José Bubis
Two protein kinase activities that use casein as a substrate, Q-I and Q-II, were identified in the epimastigote stage of Trypanosoma cruzi upon chromatography on Q-Sepharose. Q-I was purified further through concanavalin A-sepharose (Q-I*) to remove any trace of the contaminating protease cruzipain. The optimal activity for Q-I* was obtained at pH 8.0, 25 degreesC, 5 mM MgCl(2) and 75 mM NaCl. The size and pI of Q-I* were determined to be 33-36 kDa and 9.6, respectively. When two selective peptide substrates for casein kinases (CKs) (P1: RRKDLHDDEEDEAMSITA for CK1 and P2: RRRADDSDDDDD for CK2) were used, Q-I* was shown to specifically phosphorylate P1. Kinetic studies showed that Q-I* has a K(m) of 5.3 +/- 0.34 mg/ml for casein, 157.6 +/- 5.3 microM for P1 and 35.9 +/- 3.9 microM for ATP. The enzyme was inhibited by N-(2-amino-ethyl)-5-chloroisoquinoline-8-sulfonamide (CKI-7) or 1-(5-chloroisoquinoline-8-sulfonyl) (CKI-8), two inactivators of mammalian CKs. CKI-7 behaved as a competitive inhibitor with respect to ATP, with a K(I) of 75-100 microM. Treatment with high concentrations of polylysine or heparin also resulted in a significant inhibition of Q-I*. Two well-known activators of mammalian CKs, spermine and spermidine, were also tested. Spermine and spermidine activated Q-I* in a dose-dependent manner. Based on the following characteristics: (1) the ionic strength required for elution from anion-exchange resins; (2) its molecular size and monomeric structure; (3) pI; (4) high level of specificity for P1; (5) inactivation by CKI-7 and CKI-8; and (6) insensitivity to GTP and low concentrations of heparin, we conclude that Q-I* belongs to the CK1 family of protein kinases.
Veterinary Parasitology | 2013
Romel Rosales; Ariadna Rangel-Rivas; América Escalona; Luis Segundo Jordan; Mary Isabel Gonzatti; Pedro María Aso; Trina Perrone; Adriana Silva-Iturriza; Alfredo Mijares
The focus of this study was the detection of equine piroplasmosis in Distrito Capital, Miranda, Aragua, Guárico and Apure States from Venezuela, using two methods: Competitive-Inhibition ELISA and multiplex PCR and the analysis of the possible differences in occurrence in relation to the primary purpose of the horses, which is related to varied degrees of exposure to tick. Antibody levels to Babesia caballi and Theileria equi were assessed in 694 equine serum samples using Competitive-Inhibition ELISA, while PCR assays were performed in 136 horses, using two sets of oligonucleotides to establish the presence of T. equi, B. caballi or both. The overall seroprevalence of equine piroplasmosis was 50.2%, antibodies to B. caballi were found in 161 horses (23.2%), whereas 97 (14.0%) were seropositive to T. equi and 90 (13.0%) were positives to both parasites (mixed infections). PCR determinations (n=136) showed a prevalence of 66.2%, distributed in 84 (61.8% positives) for T. equi and, 6 (4.4%) were positive to both parasites. The cELISA showed higher levels of prevalence of B. caballi and mixed infections, as compared to the PCR method. This discrepancy can be explained by the different parameters that are evaluated by each technique, PCR detect the parasite itself, while cELISA detects antibodies to the parasite. By PCR, the highest prevalence was found in Apure state, where 92.3% of the samples were positive to T. equi infections. In this locality, free grazing animals are used for livestock management. This high prevalence may be linked to the tick species present in that area. More epidemiological studies will be necessary to assess the epidemiological status of equine piroplasmosis in Venezuela.
Experimental Parasitology | 2002
Beatriz Casas; Maritza Calabokis; Liliana Kurz; José Manuel Galán-Caridad; José Bubis; Mary Isabel Gonzatti
One predominant 55-kDa polypeptide was phosphorylated in vitro in Trypanosoma cruzi homogenates prepared from three differentiation stages: epimastigotes, trypomastigotes, and spheromastigotes. Anti-alpha and anti-beta tubulin monoclonal antibodies immunoprecipitated the phosphorylated 55-kDa polypeptide from epimastigote extracts. Phosphoserine was the only residue phosphorylated in vitro in the 55-kDa polypeptide and in immunoprecipitated alpha tubulin. The phosphorylation of both the 55-kDa polypeptide and exogenously added casein was inhibited with GTP, heparin, and 2,3-bisphosphoglycerate in a dose-dependent manner, indicating the involvement of a CK2-like protein kinase. Moreover, when tubulin was isolated from an epimastigote homogenate by ultracentrifugation, followed by DEAE-Sephacel chromatography, a protein kinase that phosphorylated tubulin and casein co-purified with this cytoskeletal component. This result suggests an association between tubulin and its corresponding protein kinase in T. cruzi.
Veterinary Parasitology | 2000
Martha Leal; Alfredo Noda; Armando Reyna-Bello; Beatriz Casas; Eric Precigout; Pedro María Aso; A. Gorenflot; Mary Isabel Gonzatti
Anaplasma marginale is the etiological agent of anaplasmosis, a tick-transmitted disease with an important economic impact that affects cattle throughout the world. Although, North American isolates of A. marginale and their antigens have been extensively studied, relatively little information is available on the antigenic composition of South American isolates. The characterization of diverse geographical isolates of A. marginale will result in a thorough antigenic profile and may lead to the identification of additional diagnostic and immunoprophylactic tools. Short-term cultures of a Venezuelan isolate (Ta) of A. marginale were maintained for up to 13 days in vitro. During that period, the A. marginale remained viable and were propagated in the bovine erythrocyte culture system. During the initial days of culture, cell division and reinvasion were evidenced by a significant rise in parasitemia up to a 50%. A. marginale antigens were identified by metabolic labeling with (35S) methionine, followed by fractionation and immunoprecipitation with homologous and heterologous bovine sera. This yielded a complete antigenic set for the Ta isolate of A. marginale, including soluble, secreted and corpuscular polypeptide antigens. Fifteen immunodominant polypeptides were recognized by the bovine sera in the soluble and corpuscular fractions with relative molecular weights of 200, 150, 100-110, 86, 60, 50, 47, 40, 37, 33, 31, 25, 23, 19 and 16kDa. Seven polypeptides were present in the exoantigen fraction. The 31 and 19kDa antigens were recognized by the ANAR76A1 and ANAF16C1 monoclonal antibodies, respectively which are specific for MSP-4 and MSP-5 from North American isolates of A. marginale. Metabolic labeling with (14C) glucosamine prior to immunoprecipitation with bovine sera allowed the identification of glycoprotein antigens of 200, 100-150, 60, 55, 50, 45-43, 37, 33, 31, 22, 19 and 16kDa in the soluble fraction.
Expert Review of Proteomics | 2013
Philippe Holzmuller; Pascal Grébaut; Silla Semballa; Mary Isabel Gonzatti; Anne Geiger
African trypanosomiases, including the human disease referred to as ‘sleeping sickness’ and the animal diseases such as nagana, surra and dourine, are neglected vector-borne diseases that after years of research still need improved diagnosis and chemotherapy. Advances in proteomics offer new tools to define biomarkers, whose expression may reflect host–parasite interactions occurring during the infection. In this review, the authors first describe the current diagnostic tools used to detect a trypanosome infection during field surveys, and then discuss their interests, limits and further evolutions. The authors also report on the contribution of molecular diagnostics, and the recent advances and developments that make it suitable for fieldwork. The authors then explore the recent uses of proteomics technology to define host and parasite biomarkers that allow detection of the infection, the power and constraints of the technology. The authors conclude by discussing the urgent need to use the biomarkers discovered in order to develop tools to improve trypanosomiasis control in the near future.