Mary J. O'Connell
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary J. O'Connell.
Nature Reviews Microbiology | 2014
James O. McInerney; Mary J. O'Connell; Davide Pisani
The origin of the eukaryotic cell, which is known as eukaryogenesis, has puzzled scientists for more than 100 years, and many hypotheses have been proposed. Recent analyses of new data enable the safe elimination of some of these hypotheses, whereas support for other hypotheses has increased. In this Opinion article, we evaluate the available theories for their compatibility with empirical observations and conclude that cellular life consists of two primary, paraphyletic prokaryotic groups and one secondary, monophyletic group that has symbiogenic origins — the eukaryotes.
PLOS Pathogens | 2011
Anthony W. Ryan; Mark Lynch; Sinead Smith; Sylvie Amu; Hendrik J. Nel; Claire E. McCoy; Jennifer K. Dowling; Eve Draper; Vincent O'Reilly; Ciara McCarthy; Julie B. O'Brien; Deirdre Ni Eidhin; Mary J. O'Connell; Brian Keogh; Charles Oliver Morton; Thomas R. Rogers; Padraic G. Fallon; Luke A. J. O'Neill; Dermot Kelleher; Christine E. Loscher
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.
Proceedings of the Royal Society of London B: Biological Sciences | 2004
Christopher J. Creevey; David A. Fitzpatrick; Gayle K. Philip; Rhoda J. Kinsella; Mary J. O'Connell; Melissa M. Pentony; Simon A. A. Travers; Mark Wilkinson; James O. McInerney
The extent to which prokaryotic evolution has been influenced by horizontal gene transfer (HGT) and therefore might be more of a network than a tree is unclear. Here we use supertree methods to ask whether a definitive prokaryotic phylogenetic tree exists and whether it can be confidently inferred using orthologous genes. We analysed an 11–taxon dataset spanning the deepest divisions of prokaryotic relationships, a 10–taxon dataset spanning the relatively recent ?–proteobacteria and a 61–taxon dataset spanning both, using species for which complete genomes are available. Congruence among gene trees spanning deep relationships is not better than random. By contrast, a strong, almost perfect phylogenetic signal exists in ?–proteobacterial genes. Deep–level prokaryotic relationships are difficult to infer because of signal erosion, systematic bias, hidden paralogy and/or HGT. Our results do not preclude levels of HGT that would be inconsistent with the notion of a prokaryotic phylogeny. This approach will help decide the extent to which we can say that there is a prokaryotic phylogeny and where in the phylogeny a cohesive genomic signal exists.
Molecular Biology and Evolution | 2013
Claire C. Morgan; Peter G. Foster; Andrew E. Webb; Davide Pisani; James O. McInerney; Mary J. O'Connell
Heterogeneity among life traits in mammals has resulted in considerable phylogenetic conflict, particularly concerning the position of the placental root. Layered upon this are gene- and lineage-specific variation in amino acid substitution rates and compositional biases. Life trait variations that may impact upon mutational rates are longevity, metabolic rate, body size, and germ line generation time. Over the past 12 years, three main conflicting hypotheses have emerged for the placement of the placental root. These hypotheses place the Atlantogenata (common ancestor of Xenarthra plus Afrotheria), the Afrotheria, or the Xenarthra as the sister group to all other placental mammals. Model adequacy is critical for accurate tree reconstruction and by failing to account for these compositional and character exchange heterogeneities across the tree and data set, previous studies have not provided a strongly supported hypothesis for the placental root. For the first time, models that accommodate both tree and data set heterogeneity have been applied to mammal data. Here, we show the impact of accurate model assignment and the importance of data sets in accommodating model parameters while maintaining the power to reject competing hypotheses. Through these sophisticated methods, we demonstrate the importance of model adequacy, data set power and provide strong support for the Atlantogenata over other competing hypotheses for the position of the placental root.
Science | 2014
Maude W. Baldwin; Yasuka Toda; Tomoya Nakagita; Mary J. O'Connell; Kirk C. Klasing; Takumi Misaka; Scott V. Edwards; Stephen D. Liberles
The makings of a powerful sweet tooth The main attraction of nectar, a hummingbird favorite, is the sweet taste of sugar. Oddly, though, birds lack the main vertebrate receptor for sweet taste, TIR2. Baldwin et al. show that a related receptor, TIR1-T1R3, which generally controls savory taste in vertebrates, adapts in hummingbirds to detect sweet (see the Perspective by Jiang and Beauchamp). This repurposing probably allowed hummingbirds to specialize in nectar feeding and may have assisted the evolution of the many and varied hummingbird species seen today. Science, this issue p. 929; see also p. 878 The ancestral savory receptor has been converted for sweet reception in hummingbirds. [Also see Perspective by Jiang and Beauchamp] Sensory systems define an animals capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.
Biology Direct | 2011
James O. McInerney; Davide Pisani; Eric Bapteste; Mary J. O'Connell
It is becoming increasingly difficult to reconcile the observed extent of horizontal gene transfers with the central metaphor of a great tree uniting all evolving entities on the planet. In this manuscript we describe the Public Goods Hypothesis and show that it is appropriate in order to describe biological evolution on the planet. According to this hypothesis, nucleotide sequences (genes, promoters, exons, etc.) are simply seen as goods, passed from organism to organism through both vertical and horizontal transfer. Public goods sequences are defined by having the properties of being largely non-excludable (no organism can be effectively prevented from accessing these sequences) and non-rival (while such a sequence is being used by one organism it is also available for use by another organism). The universal nature of genetic systems ensures that such non-excludable sequences exist and non-excludability explains why we see a myriad of genes in different combinations in sequenced genomes. There are three features of the public goods hypothesis. Firstly, segments of DNA are seen as public goods, available for all organisms to integrate into their genomes. Secondly, we expect the evolution of mechanisms for DNA sharing and of defense mechanisms against DNA intrusion in genomes. Thirdly, we expect that we do not see a global tree-like pattern. Instead, we expect local tree-like patterns to emerge from the combination of a commonage of genes and vertical inheritance of genomes by cell division. Indeed, while genes are theoretically public goods, in reality, some genes are excludable, particularly, though not only, when they have variant genetic codes or behave as coalition or club goods, available for all organisms of a coalition to integrate into their genomes, and non-rival within the club. We view the Tree of Life hypothesis as a regionalized instance of the Public Goods hypothesis, just like classical mechanics and euclidean geometry are seen as regionalized instances of quantum mechanics and Riemannian geometry respectively. We argue for this change using an axiomatic approach that shows that the Public Goods hypothesis is a better accommodation of the observed data than the Tree of Life hypothesis.
Nature microbiology | 2017
James O. McInerney; Alan McNally; Mary J. O'Connell
The existence of large amounts of within-species genome content variability is puzzling. Population genetics tells us that fitness effects of new variants—either deleterious, neutral or advantageous—combined with the long-term effective population size of the species determines the likelihood of a new variant being removed, spreading to fixation or remaining polymorphic. Consequently, we expect that selection and drift will reduce genetic variation, which makes large amounts of gene content variation in some species so puzzling. Here, we amalgamate population genetic theory with models of horizontal gene transfer and assert that pangenomes most easily arise in organisms with large long-term effective population sizes, as a consequence of acquiring advantageous genes, and that the focal species has the ability to migrate to new niches. Therefore, we suggest that pangenomes are the result of adaptive, not neutral, evolution. Amalgamation of population genetic theory and models of horizontal gene transfer suggest that pangenomes in prokaryotes result from adaptive, not neutral, evolution.
Journal of Virology | 2005
Simon A. A. Travers; Mary J. O'Connell; Grace P. McCormack; James O. McInerney
ABSTRACT Recent studies have demonstrated the emergence of human immunodeficiency virus type 1 (HIV-1) subtypes with various levels of fitness. Using heterogeneous maximum-likelihood models of adaptive evolution implemented in the PAML software package, with env sequences representing each HIV-1 group M subtype, we examined the various intersubtype selective pressures operating across the env gene. We found heterogeneity of evolutionary mechanisms between the different subtypes with a category of amino acid sites observed that had undergone positive selection for subtypes C, F1, and G, while these sites had undergone purifying selection in all other subtypes. Also, amino acid sites within subtypes A and K that had undergone purifying selection were observed, while these sites had undergone positive selection in all other subtypes. The presence of such sites indicates heterogeneity of selective pressures within HIV-1 group M subtype evolution that may account for the various levels of fitness of the subtypes.
Molecular Biology and Evolution | 2014
Leanne S. Haggerty; Pierre-Alain Jachiet; William P. Hanage; David A. Fitzpatrick; Philippe Lopez; Mary J. O'Connell; Davide Pisani; Mark Wilkinson; Eric Bapteste; James O. McInerney
Defining homologous genes is important in many evolutionary studies but raises obvious issues. Some of these issues are conceptual and stem from our assumptions of how a gene evolves, others are practical, and depend on the algorithmic decisions implemented in existing software. Therefore, to make progress in the study of homology, both ontological and epistemological questions must be considered. In particular, defining homologous genes cannot be solely addressed under the classic assumptions of strong tree thinking, according to which genes evolve in a strictly tree-like fashion of vertical descent and divergence and the problems of homology detection are primarily methodological. Gene homology could also be considered under a different perspective where genes evolve as “public goods,” subjected to various introgressive processes. In this latter case, defining homologous genes becomes a matter of designing models suited to the actual complexity of the data and how such complexity arises, rather than trying to fit genetic data to some a priori tree-like evolutionary model, a practice that inevitably results in the loss of much information. Here we show how important aspects of the problems raised by homology detection methods can be overcome when even more fundamental roots of these problems are addressed by analyzing public goods thinking evolutionary processes through which genes have frequently originated. This kind of thinking acknowledges distinct types of homologs, characterized by distinct patterns, in phylogenetic and nonphylogenetic unrooted or multirooted networks. In addition, we define “family resemblances” to include genes that are related through intermediate relatives, thereby placing notions of homology in the broader context of evolutionary relationships. We conclude by presenting some payoffs of adopting such a pluralistic account of homology and family relationship, which expands the scope of evolutionary analyses beyond the traditional, yet relatively narrow focus allowed by a strong tree-thinking view on gene evolution.
BMC Evolutionary Biology | 2008
Noeleen B. Loughran; Brendan O'Connor; Ciarán Ó'Fágáin; Mary J. O'Connell
BackgroundThe mammalian heme peroxidases (MHPs) are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimers disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other.ResultsSufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease.ConclusionOur analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i) fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii), we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.