Mary Jane Hinrichs
MedImmune
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Jane Hinrichs.
Cancer Cell | 2016
John Y. Li; Samuel R. Perry; Vanessa Muniz-Medina; Xinzhong Wang; Leslie Wetzel; Marlon Rebelatto; Mary Jane Hinrichs; Binyam Bezabeh; Ryan Fleming; Nazzareno Dimasi; Hui Feng; Dorin Toader; Andy Q. Yuan; Lan Xu; Jia Lin; Changshou Gao; Herren Wu; Rakesh Dixit; Jane K. Osbourn; Steven Coats
Antibody-drug conjugate (ADC) which delivers cytotoxic drugs specifically into targeted cells through internalization and lysosomal trafficking has emerged as an effective cancer therapy. We show that a bivalent biparatopic antibody targeting two non-overlapping epitopes on HER2 can induce HER2 receptor clustering, which in turn promotes robust internalization, lysosomal trafficking, and degradation. When conjugated with a tubulysin-based microtubule inhibitor, the biparatopic ADC demonstrates superior anti-tumor activity over ado-trastuzumab emtansine (T-DM1) in tumor models representing various patient subpopulations, including T-DM1 eligible, T-DM1 ineligible, and T-DM1 relapsed/refractory. Our findings indicate that this biparatopic ADC has promising potential as an effective therapy for metastatic breast cancer and a broader patient population may benefit from this unique HER2-targeting ADC.
Aaps Journal | 2015
Mary Jane Hinrichs; Rakesh Dixit
Antibody drug conjugates (ADCs) are biopharmaceutical molecules consisting of a cytotoxic small molecule covalently linked to a targeted protein carrier via a stable cleavable or noncleavable linker. The process of conjugation yields a highly complex molecule with biochemical properties that are distinct from those of the unconjugated components. The impact of these biochemical differences on the safety and pharmacokinetic (PK) profile of the conjugate must be considered when determining the types of nonclinical safety studies required to support clinical development of ADCs. The hybrid nature of ADCs highlights the need for a science-based approach to safety assessment that incorporates relevant aspects of small and large molecule testing paradigms. This thinking is reflected in current regulatory guidelines, where sections pertaining to conjugates allow for a flexible approach to nonclinical safety testing. The aim of this article is to review regulatory expectations regarding early assessment of nonclinical safety considerations and discuss how recent advances in our understanding of ADC-mediated toxicity can be used to guide the types of nonclinical safety studies needed to support ADC clinical development. The review will also explore nonclinical testing strategies that can be used to streamline ADC development by assessing the safety and efficacy of next generation ADC constructs using a rodent screen approach.
Journal of Controlled Release | 2016
Pamela Thompson; Ryan Fleming; Binyam Bezabeh; Fengying Huang; Shenlan Mao; Cui Chen; Jay Harper; Haihong Zhong; Xizhe Gao; Xiang-Qing Yu; Mary Jane Hinrichs; Molly Reed; Adeela Kamal; Patrick Strout; Song Cho; Rob Woods; Robert E. Hollingsworth; Rakesh Dixit; Herren Wu; Changshou Gao; Nazzareno Dimasi
Antibody-drug conjugates (ADCs) are among the most promising empowered biologics for cancer treatment. ADCs are commonly prepared by chemical conjugation of small molecule cytotoxic anti-cancer drugs to antibodies through either lysine side chains or cysteine thiols generated by the reduction of interchain disulfide bonds. Both methods yield heterogeneous conjugates with complex biophysical properties and suboptimal serum stability, efficacy, and pharmacokinetics. To limit the complexity of cysteine-based ADCs, we have engineered and characterized in vitro and in vivo antibody cysteine variants that allow precise control of both site of conjugation and drug load per antibody molecule. We demonstrate that the chemically-defined cysteine-engineered antibody-tubulysin conjugates have improved ex vivo and in vivo stability, efficacy, and pharmacokinetics when compared to conventional cysteine-based ADCs with similar drug-to-antibody ratios. In addition, to limit the non-target FcγRs mediated uptake of the ADCs by cells of the innate immune system, which may result in off-target toxicities, the ADCs have been engineered to lack Fc-receptor binding. The strategies described herein are broadly applicable to any full-length IgG or Fc-based ADC and have been incorporated into an ADC that is in phase I clinical development.
Toxicology and Applied Pharmacology | 2014
Patricia C. Ryan; Matthew A. Sleeman; Marlon Rebelatto; Bing Wang; Hong Lu; Xiaomin Chen; Chi-Yuan Wu; Mary Jane Hinrichs; Lorin Roskos; Heidi Towers; Kathleen McKeever; Rakesh Dixit
Mavrilimumab (CAM-3001) is an investigational human IgG4 monoclonal antibody (MAb) targeting GM-CSF receptor alpha which is currently being developed for the treatment of RA. GM-CSF plays a central role in the pathogenesis of rheumatoid arthritis (RA) through the activation, differentiation, and survival of macrophages and neutrophils. To support clinical development, the nonclinical safety of mavrilimumab was evaluated in several studies with cynomolgus monkeys as the pharmacologically relevant species. Comprehensive toxicity parameters were assessed in each study, and treatment duration ranged from 4 to 26weeks. Mavrilimumab has an acceptable safety profile in monkeys with no changes in any parameters other than microscopic findings in lung. In several studies, minimal accumulation of foamy alveolar macrophages was observed. This finding was only seen in studies of at least 11weeks duration, was reversible following a dose-free recovery period and was considered non-adverse. At higher dose levels (≥30mg/kg/week), in a 26-week repeat-IV dose study, the presence of lung foreign material, cholesterol clefts, and granulomatous inflammation was also observed in a few animals and was considered adverse. The dose- and time-related accumulation of foamy macrophages in lung following exposure to mavrilimumab observed in several NHP studies was expected based upon the known role of GM-CSFRα signaling in the function of alveolar macrophages. Overall, a clean no-observed-adverse-effect-level (NOAEL) without any effects in lung was established and provided adequate clinical safety margins. In clinical studies in RA patients, mavrilimumab has demonstrated good clinical activity with adequate safety to support further clinical development. A Phase 2b study of mavrilimumab in subjects with RA is in progress.
Oncologist | 2015
Aaron Richard Hansen; Natalie Cook; M. Stacey Ricci; Albiruni R. A. Razak; Christophe Le Tourneau; Kathleen McKeever; Lorin Roskos; Rakesh Dixit; Lillian L. Siu; Mary Jane Hinrichs
BACKGROUND First-in-human (FIH) trials of low-molecular-weight anticancer agents conventionally derive a safe start dose (SD) from one-tenth the severely toxic dose in 10% of rodents or one-sixth the highest nonseverely toxic dose (HNSTD) in nonrodent species. No consensus has been reached on whether this paradigm can be safely applied to biotechnology-derived products (BDPs). MATERIALS AND METHODS A comprehensive search was conducted to identify all BDPs (excluding immune checkpoint inhibitors and antibody drug conjugates) with sufficient nonclinical and clinical data to assess the safety of hypothetical use of one-sixth HNSTD in an advanced cancer FIH trial. RESULTS The search identified 23 BDPs, of which 21 were monoclonal antibodies. The median ratio of the maximum tolerated or maximum administered dose (MTD or MAD) to the actual FIH SD was 36 (range, 8-500). Only 2 BDPs reached the MTD. Hypothetical use of one-sixth HNSTD (allometrically scaled to humans) would not have exceeded the MTD or MAD for all 23 BDPs and would have reduced the median ratio of the MTD or MAD to a SD to 6.1 (range, 3.5-55.3). Pharmacodynamic (PD) markers were included in some animal toxicology studies and were useful to confirm the hypothetical SD of one-sixth HNSTD. CONCLUSION One-sixth HNSTD would not have resulted in unacceptable toxicities in the data available. Supporting its use could reduce the number of dose escalations needed to reach the recommended dose. A low incidence of toxicities in animals and humans underscores the need to identify the pharmacokinetic and PD parameters to guide SD selection of BDPs for FIH cancer trials. IMPLICATIONS FOR PRACTICE Start dose (SD) for biotechnology-derived products (BDPs) can be safely derived from one-sixth the highest nonseverely toxic dose in nonrodent species and may reduce the number of dose escalations needed to reach the recommended dose in first-in-human studies while limiting unnecessary exposure to high drug levels in humans. The use of this type of SD could improve the design of phase I studies of BDPs by making them more efficient. The role of preclinical pharmacodynamic markers was useful in confirming the hypothetical SD, and attempts should be explored in future animal studies to identify such parameters.
Molecular Cancer Therapeutics | 2017
Jay Harper; Chris Lloyd; Nazzareno Dimasi; Dorin Toader; Rose Marwood; Leeanne Lewis; David Bannister; Jelena Jovanović; Ryan Fleming; Francois D'Hooge; Shenlan Mao; Allison M. Marrero; Martin Korade; Patrick Strout; Linda Xu; Cui Chen; Leslie Wetzel; Shannon Breen; Lilian van Vlerken-Ysla; Sanjoo Jalla; Marlon Rebelatto; Haihong Zhong; Elaine M. Hurt; Mary Jane Hinrichs; Keven Huang; Philip W. Howard; David A. Tice; Robert E. Hollingsworth; Ronald Herbst; Adeela Kamal
Antibody–drug conjugates (ADC) are used to selectively deliver cytotoxic agents to tumors and have the potential for increased clinical benefit to cancer patients. 5T4 is an oncofetal antigen overexpressed on the cell surface in many carcinomas on both bulk tumor cells as well as cancer stem cells (CSC), has very limited normal tissue expression, and can internalize when bound by an antibody. An anti-5T4 antibody was identified and optimized for efficient binding and internalization in a target-specific manner, and engineered cysteines were incorporated into the molecule for site-specific conjugation. ADCs targeting 5T4 were constructed by site-specifically conjugating the antibody with payloads that possess different mechanisms of action, either a DNA cross-linking pyrrolobenzodiazepine (PBD) dimer or a microtubule-destabilizing tubulysin, so that each ADC had a drug:antibody ratio of 2. The resulting ADCs demonstrated significant target-dependent activity in vitro and in vivo; however, the ADC conjugated with a PBD payload (5T4-PBD) elicited more durable antitumor responses in vivo than the tubulysin conjugate in xenograft models. Likewise, the 5T4-PBD more potently inhibited the growth of 5T4-positive CSCs in vivo, which likely contributed to its superior antitumor activity. Given that the 5T4-PBD possessed both potent antitumor activity as well as anti-CSC activity, and thus could potentially target bulk tumor cells and CSCs in target-positive indications, it was further evaluated in non-GLP rat toxicology studies that demonstrated excellent in vivo stability with an acceptable safety profile. Taken together, these preclinical data support further development of 5T4-PBD, also known as MEDI0641, against 5T4+ cancer indications. Mol Cancer Ther; 16(8); 1576–87. ©2017 AACR.
Clinical Cancer Research | 2017
Mary Jane Hinrichs; Pauline M. Ryan; Bo Zheng; Shameen Afif-Rider; Xiang Qing Yu; Michele Gunsior; Haihong Zhong; Jay Harper; Binyam Bezabeh; Kapil Vashisht; Marlon Rebelatto; Molly Reed; Patricia C. Ryan; Shannon Breen; Neki V. Patel; Cui Chen; Luke Masterson; Arnaud Tiberghien; Phillip W. Howard; Nazzareno Dimasi; Rakesh Dixit
Purpose: To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity. Experimental Design: A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure–activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer. The exposure–tolerability relationship was similarly investigated in rat and monkey toxicology studies by comparing tolerability, as assessed by survival, body weight, and organ-specific toxicities, after single and fractionated dosing with ADCs conjugated to SG3249 (rats) or SG3400, a structurally related PBD (monkeys). Results: Observations of similar antitumor activity in mice treated with single or fractionated dosing suggests that antitumor activity of PBD ADCs is more closely related to total exposure (AUC) than peak drug concentrations (Cmax). In contrast, improved survival and reduced toxicity in rats and monkeys treated with a fractionated dosing schedule suggests that tolerability of PBD ADCs is more closely associated with Cmax than AUC. Conclusions: We provide the first evidence that fractionated dosing can improve preclinical tolerability of at least some PBD ADCs without compromising efficacy. These findings suggest that preclinical exploration of dosing schedule could be an important clinical strategy to improve the therapeutic window of highly potent ADCs and should be investigated further. Clin Cancer Res; 23(19); 5858–68. ©2017 AACR.
Toxicologic Pathology | 2017
Lila Ramaiah; Mary Jane Hinrichs; Elizabeth Skuba; William O. Iverson; Daniela Ennulat
The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.
Cancer Research | 2016
John Y. Li; Dorin Toader; Samuel R. Perry; Vanessa Muniz-Medina; Leslie Wetzel; Marlon Rebelatto; Mary Jane Hinrichs; Ryan Fleming; Binyam Bezabeh; Pamela Thompson; Nazzareno Dimasi; Brandon Lam; Xian-Qing Yu; Changshou Gao; Rakesh Dixit; Steven Coats; Jane K. Osbourn; Herren Wu
Antibody drug conjugates (ADCs) combine the specificity of antibodies with the potent cytotoxicity of small molecule drugs and have shown to provide therapeutic options for various cancers. We report herein the discovery of a HER2-targeting ADC MEDI4276 that showed potent cell killing activity in vitro in cancer cell lines that express the HER2 receptor. The observed in vitro activity translated into in vivo tumor growth inhibition in various xenograft mouse models. MEDI4276 is a homogeneous molecule with precise control of drug loading following site specific conjugation of a cytotoxic drug. The drug in MEDI4276 is MMETA, a fully synthetic analog of the tubulysin family that showed pM potency in a panel of cancer cell lines. MMETA was conjugated to the antibody via engineered cysteines with a maleimide-bearing mc-Lys protease cleavable linker. The antibody in MEDI4276 is a bivalent biparatopic antibody targeting two distinct non-overlapping epitopes on HER2 that leads to antibody-receptor clustering following binding and thus promoting internalization, lysosomal trafficking and degradation. The combination of enhanced internalization and potent cytotoxic drug allows for this ADC to kill tumor cell populations with a broader range of HER2 expression. Preclinical studies showed that MEDI4276 induced tumor regression in HER2-positive tumor models that had developed acquired resistance to T-DM1 and in a number of models with lower HER2 expression that are refractory to T-DM1 treatment. Overall, our findings underscore the potential application of MEDI4276 to treat a large patient population that is ineligible for or relapsed/refractory to current HER2-targeted therapies. MEDI4276 is currently being investigated in a Phase I clinical trial. Citation Format: John Li, Dorin Toader, Samuel R. Perry, Vanessa Muniz-Medina, Leslie Wetzel, Marlon C. Rebelatto, Mary Jane Masson Hinrichs, Ryan Fleming, Binyam Bezabeh, Pamela Thompson, Nazzareno Dimasi, Brandon Lam, Xian-Qing Yu, Changshou Gao, Rakesh Dixit, Steven Coats, Jane Osbourn, Herren Wu. MEDI4276, a HER2-targeting antibody tubulysin conjugate, displays potent in vitro and in vivo activity in preclinical studies. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2970.
Molecular Cancer Therapeutics | 2018
Song Cho; Francesca Zammarchi; David G. Williams; Carin E.G. Havenith; Noel R. Monks; Peter Tyrer; Francois D'Hooge; Ryan Fleming; Kapil Vashisht; Nazzareno Dimasi; Francois Bertelli; Simon Corbett; Lauren Adams; Halla W. Reinert; Sandamali Dissanayake; Charles E. Britten; Wanda King; Karma Dacosta; Ravinder Tammali; Kevin Schifferli; Patrick Strout; Martin Korade; Mary Jane Hinrichs; Simon Chivers; Eva Corey; He Liu; Sae Kim; Neil H. Bander; Philip W. Howard; John A. Hartley
Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody–drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust antitumor activity against the LNCaP and the castration-resistant CWR22Rv1 prostate cancer cell line xenografts. MEDI3726 also demonstrated durable antitumor activity in the PSMA-positive human prostate cancer patient–derived xenograft (PDX) LuCaP models. This activity correlated with increased phosphorylated Histone H2AX in tumor xenografts treated with MEDI3726. MEDI3726 is being evaluated in a phase I clinical trial as a treatment for patients with metastatic castrate-resistant prostate cancer (NCT02991911). Mol Cancer Ther; 17(10); 2176–86. ©2018 AACR.