Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary-Jane Lombardo is active.

Publication


Featured researches published by Mary-Jane Lombardo.


Molecular Cell | 2001

SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification

Gregory J. McKenzie; Peter L. Lee; Mary-Jane Lombardo; P. J. Hastings; Susan M. Rosenberg

Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.


The EMBO Journal | 1997

GENOME-WIDE HYPERMUTATION IN A SUBPOPULATION OF STATIONARY-PHASE CELLS UNDERLIES RECOMBINATION-DEPENDENT ADAPTIVE MUTATION

Reuben S. Harris; Mary-Jane Lombardo; Carl Thulin; Susan M. Rosenberg

Stationary‐phase mutation in microbes can produce selected (‘adaptive’) mutants preferentially. In one system, this occurs via a distinct, recombination‐dependent mechanism. Two points of controversy have surrounded these adaptive reversions of an Escherichia coli lac mutation. First, are the mutations directed preferentially to the selected gene in a Lamarckian manner? Second, is the adaptive mutation mechanism specific to the F plasmid replicon carrying lac? We report that lac adaptive mutations are associated with hypermutation in unselected genes, in all replicons in the cell. The associated mutations have a similar sequence spectrum to the adaptive reversions. Thus, the adaptive mutagenesis mechanism is not directed to the lac genes, in a Lamarckian manner, nor to the F′ replicon carrying lac. Hypermutation was not found in non‐revertants exposed to selection. Therefore, the genome‐wide hypermutation underlying adaptive mutation occurs in a differentiated subpopulation. The existence of mutable subpopulations in non‐growing cells is important in bacterial evolution and could be relevant to the somatic mutations that give rise to cancers in multicellular organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Stationary-phase mutation in the bacterial chromosome: Recombination protein and DNA polymerase IV dependence

Harold J. Bull; Mary-Jane Lombardo; Susan M. Rosenberg

Several microbial systems have been shown to yield advantageous mutations in slowly growing or nongrowing cultures. In one assay system, the stationary-phase mutation mechanism differs from growth-dependent mutation, demonstrating that the two are different processes. This system assays reversion of a lac frameshift allele on an F′ plasmid in Escherichia coli. The stationary-phase mutation mechanism at lac requires recombination proteins of the RecBCD double-strand-break repair system and the inducible error-prone DNA polymerase IV, and the mutations are mostly −1 deletions in small mononucleotide repeats. This mutation mechanism is proposed to occur by DNA polymerase errors made during replication primed by recombinational double-strand-break repair. It has been suggested that this mechanism is confined to the F plasmid. However, the cells that acquire the adaptive mutations show hypermutation of unrelated chromosomal genes, suggesting that chromosomal sites also might experience recombination protein-dependent stationary-phase mutation. Here we test directly whether the stationary-phase mutations in the bacterial chromosome also occur via a recombination protein- and pol IV-dependent mechanism. We describe an assay for chromosomal mutation in cells carrying the F′ lac. We show that the chromosomal mutation is recombination protein- and pol IV-dependent and also is associated with general hypermutation. The data indicate that, at least in these male cells, recombination protein-dependent stationary-phase mutation is a mechanism of general inducible genetic change capable of affecting genes in the bacterial chromosome.


Molecular Microbiology | 2010

The σE stress response is required for stress-induced mutation and amplification in Escherichia coli

Janet L. Gibson; Mary-Jane Lombardo; P. C. Thornton; Kenneth H. Hu; Rodrigo S. Galhardo; Bernadette Beadle; Anand Habib; Daniel B. Magner; Laura S. Frost; Christophe Herman; P. J. Hastings; Susan M. Rosenberg

Pathways of mutagenesis are induced in microbes under adverse conditions controlled by stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e. are stressed. Stress‐induced mutagenesis in the Escherichia coli Lac assay occurs either by ‘point’ mutation or gene amplification. Point mutagenesis is associated with DNA double‐strand‐break (DSB) repair and requires DinB error‐prone DNA polymerase and the SOS DNA‐damage‐ and RpoS general‐stress responses. We report that the RpoE envelope‐protein‐stress response is also required. In a screen for mutagenesis‐defective mutants, we isolated a transposon insertion in the rpoE P2 promoter. The insertion prevents rpoE induction during stress, but leaves constitutive expression intact, and allows cell viability. rpoE insertion and suppressed null mutants display reduced point mutagenesis and maintenance of amplified DNA. Furthermore, σE acts independently of stress responses previously implicated: SOS/DinB and RpoS, and of σ32, which was postulated to affect mutagenesis. I‐SceI‐induced DSBs alleviated much of the rpoE phenotype, implying that σE promoted DSB formation. Thus, a third stress response and stress input regulate DSB‐repair‐associated stress‐induced mutagenesis. This provides the first report of mutagenesis promoted by σE, and implies that extracytoplasmic stressors may affect genome integrity and, potentially, the ability to evolve.


Gene | 2001

The TGV transgenic vectors for single-copy gene expression from the Escherichia coli chromosome.

Laura M. Gumbiner-Russo; Mary-Jane Lombardo; Rebecca G. Ponder; Susan M. Rosenberg

Plasmid-based cloning and expression of genes in Escherichia coli can have several problems: plasmid destabilization; toxicity of gene products; inability to achieve complete repression of gene expression; non-physiological overexpression of the cloned gene; titration of regulatory proteins; and the requirement for antibiotic selection. We describe a simple system for cloning and expression of genes in single copy in the E. coli chromosome, using a non-antibiotic selection for transgene insertion. The transgene is inserted into a vector containing homology to the chromosomal region flanking the attachment site for phage lambda. This vector is then linearized and introduced into a recombination-proficient E. coli strain carrying a temperature-sensitive lambda prophage. Selection for replacement of the prophage with the transgene is performed at high temperature. Once in the chromosome, transgenes can be moved into other lysogenic E. coli strains using standard phage-mediated transduction techniques, selecting against a resident prophage. Additional vector constructs provide an arabinose-inducible promoter (P(BAD)), P(BAD) plus a translation-initiation sequence, and optional chloramphenicol-, tetracycline-, or kanamycin-resistance cassettes. These Transgenic E. coli Vectors (TGV) allow drug-free, single-copy expression of genes from the E. coli chromosome, and are useful for genetic studies of gene function.


Journal of Bacteriology | 2000

radC102 of Escherichia coli is an allele of recG.

Mary-Jane Lombardo; Susan M. Rosenberg

The radC102 mutation causes mild UV and X-ray sensitivity and was mapped previously to near pyrE and recG at 82 min on the Escherichia coli chromosome (I. Felzenszwalb, N. J. Sargentini, and K. C. Smith, Radiat. Res. 97:615-625, 1984). We report that radC102 has two striking phenotypes characteristic of recG mutations. First, it causes dramatically increased RecA-dependent mutation in a stationary-phase mutation assay. Second, it causes extreme UV sensitivity in combination with ruv mutations affecting the RuvABC Holliday junction resolution system. DNA sequencing of the radC and recG genes in radC102 strains revealed that the radC102 mutation creates a stop codon in recG that is predicted to truncate the RecG protein at 410 of 603 amino acids. A low-copy-number plasmid carrying the radC(+) gene did not affect the UV sensitivity of a wild-type strain, a radC102 strain, or a recG258::Tn10mini-kan strain. We conclude that radC102 is an allele of recG and that the function of the RadC protein remains to be determined.


Annals of the New York Academy of Sciences | 1999

Mechanisms of Genome‐Wide Hypermutation in Stationary Phasea

Mary-Jane Lombardo; Harold J. Bull; Gregory J. McKenzie; Susan M. Rosenberg

ABSTRACT: Stationary‐phase mutation (a subset of which was previously called adaptive mutation) occurs in apparently nondividing, stationary‐phase cells exposed to a nonlethal genetic selection. In one experimental system, stationary‐phase reversion of an Escherichia coli F′‐borne lac frameshift mutation occurs by a novel molecular mechanism that requires homologous recombination functions of the RecBCD system. Chromosomal mutations at multiple loci are detected more frequently in Lac+ stationary‐phase revertants than in cells that were also exposed to selection but did not become Lac+. Thus, mutating cells represent a subpopulation that experiences hypermutation throughout the genome. This paper summarizes current knowledge regarding stationary‐phase mutation in the lac system. Hypotheses for the mechanism of chromosomal hypermutation are discussed, and data are presented that exclude one hypothetical mechanism in which chromosomal mutations result from Hfr formation.


Journal of Genetics | 1999

Hypermutation in stationary-phaseE. coli: tales from thelac operon

Mary-Jane Lombardo; Susan M. Rosenberg

Escherichia coli cells are capable of complex regulatory responses to environmental conditions and stresses. In some circumstances, the response includes an increase in the mutation rate, effectively mutagenizing the genome. The classic example is the SOS response to DNA damage. Recent work indicates that other environmental stresses can also result in mutation of the genome. Modulation of mutation rate may be a more prevalent stress response than previously thought. In this review we focus on genome-wide mutation inE. coli cells subjected to a nonlethal genetic selection for reversion of alac frameshift allele. Reversion of thelac frameshift allele occurs via a novel mechanism that requires homologous recombination functions, and is enhanced by transiently diminished postsynthesis mismatch repair. A model for recombination-dependent stationary-phase mutation will be presented and its relevance for genome-wide mutation discussed.


DNA Repair | 2003

xni-deficient Escherichia coli are proficient for recombination and multiple pathways of repair

Mary-Jane Lombardo; Ildiko Aponyi; Mellanie P. Ray; Margarita Sandigursky; William A. Franklin; Susan M. Rosenberg

Single-strand-dependent DNA exonucleases play important roles in DNA repair and recombination in all organisms. In Escherichia coli the redundant functions provided by the RecJ, ExoI, ExoVII and ExoX exonucleases are required for mismatch repair, UV resistance and homologous recombination. We have examined whether the xni gene product, the single-strand exonuclease ExoIX, is also a member of this group. We find that deletion of xni has no effect on the above processes, or on resistance to oxidative damage, even in combination with other exonuclease mutations. We conclude that the xni gene product does not belong to this group of nucleases that play redundant roles in DNA recombination and repair.


PLOS ONE | 2015

Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli

Janet L. Gibson; Mary-Jane Lombardo; Ildiko Aponyi; Diana Vera Cruz; Mellanie P. Ray; Susan M. Rosenberg

Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

Collaboration


Dive into the Mary-Jane Lombardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold J. Bull

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ildiko Aponyi

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mellanie P. Ray

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

P. J. Hastings

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge