Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary K. Walker is active.

Publication


Featured researches published by Mary K. Walker.


Toxicological Sciences | 1996

Potency of a Complex Mixture of Polychlorinated Dibenzo-p-dioxin, Dibenzofuran, and Biphenyl Congeners Compared to 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Causing Fish Early Life Stage Mortality

Mary K. Walker; Philip M. Cook; Brian C. Butterworth; Erik W. Zabel; Richard E. Peterson

Use of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalents concentration (TEC) assumes that polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) act additively and via a common mechanism to cause toxicity. To test these assumptions, 11 TCDD-like congeners and three non-TCDD-like congeners were combined at ratios typically found in Lake Michigan lake trout. The potency of the mixture, expressed as TEC based on fish-specific toxic equivalency factors, was compared to TCDD for producing lake trout and rainbow trout early life stage mortality. Signs of toxicity following exposure of newly fertilized eggs to the mixture or to TCDD were indistinguishable; sac fry mortality associated with blue-sac disease, and slopes of the dose-response curves for percentage sac fry mortality versus egg TEC or versus egg TCDD were parallel. However, the mixture dose-response curves were significantly shifted to the right of the TCDD dose-response curves by 1.3- and 1.8-fold as illustrated by LD50 values. Following exposure to the mixture or TCDD, LD50S for lake trout early life stage mortality were 97 (89-110) pg TE/g egg and 74 (70-80) pg TCDD/g (LD50, 95% fiducial limits) and for rainbow trout were 362 (312-406) pg TE/g egg and 200 (148-237) pg TCDD/g egg. These data suggest that TCDD-like congeners act via a common mechanism to cause toxicity during trout early development, but may not act strictly additively when combined in a mixture of TCDD- and non-TCDD-like congeners at ratios found in Great Lakes fish. The deviation from additivity, however, is less than current safety factors of 10-fold commonly applied in ecological risk assessments, providing support for the continued use of a TE additivity model for assessing risk posed by complex mixtures of PCDDs, PCDFs, and PCBs to fish.


Journal of Environmental Science and Health Part C-environmental Carcinogenesis & Ecotoxicology Reviews | 2009

Overview of Developmental Heart Defects by Dioxins, PCBs, and Pesticides

Phillip G. Kopf; Mary K. Walker

The developing cardiovascular system is a sensitive target of many environmental pollutants, including dioxins, dioxin-like polychlorinated biphenyls (PCBs), and some pesticides such as methyl parathion. Laboratory research has utilized a variety of vertebrate models to elucidate potential mechanisms that mediate this cardioteratogenicity and to establish the sensitivity of different species for predicting potential risk to environmental and human health. Studies of dioxin and dioxin-like PCBs have illustrated that piscine, avian, and mammalian embryos exhibit cardiovascular structural changes and functional deficits, although the specific characteristics vary among the individual models. Piscine models typically exhibit reduced blood flow, altered heart looping, and reduced heart size and contraction rate. The chick embryo exhibits extensive cardiac dilation, thinner ventricle walls, and reduced responsiveness to chronotropic stimuli, while the murine embryo exhibits reduced heart size. It is notable that in all models the dioxin-associated cardioteratogenicity is associated with increases in cardiovascular apoptosis and decreases in cardiocyte proliferation. While the cardiotertogenicity in piscine and avian species is associated with overt morbidity and mortality, that is not the case for the murine embryo. However, murine offspring exposed during development to dioxin exhibit cardiac hypertrophy and an increased sensitivity to a second cardiovascular insult in adulthood. Thus, although the mammalian embryo is less sensitive to cardiovascular defects by dioxin and dioxin-like compounds, developmental exposure increases the risk of cardiovascular disease later in life. The impact of developmental exposure to dioxin-like chemicals on human cardiovascular disease susceptibility is not known. However, recent animal research has confirmed human epidemiology studies that dioxin exposure in adulthood is associated with hypertension and cardiovascular disease.


Cardiovascular Toxicology | 2002

Aryl hydrocarbon receptor null mice develop cardiac hypertrophy and increased hypoxia-inducible factor-1α in the absence of cardiac hypoxia

E. A. Thackaberry; D. M. Gabaldon; Mary K. Walker; S. M. Smith

The aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix PAS (Per-ARNT-SIM) transcription family, which also includes hypoxia-inducible factor-1α (HIF-1α) and its common dimerization partner AhR nuclear translocator (ARNT). Following ligand activation or hypoxia, AhR or HIF-1α, respectively, translocate into the nucleus, dimerize with ARNT, and regulate gene expresion. Mice lacking the AhR have been shown previously to develop cardiac enlargement. In cardiac hypertrophy, it has been suggested that the myocardium becomes hypoxic, increasing HIF-1α stabilization and inducing coronary neovascularization, however, this mechanism has not been demonstrated in vivo. The purpose of this study was to investigate the cardiac enlargement reported in AhR−/− mice and to determine if it was associated with myocardial hypoxia and subsequent activation of the HIF-1α pathway. We found that AhR−/− mice develop significant cardiac hypertrophy at 5 mo. However, this cardiac hypertrophy was not associated with myocardial hypoxia. Despite this finding, cardiac hypertrophy in AhR−/− mice was associated with increased cardiac HIF-1α protein expression and increased mRNA expression of the neovascularization factor vascular endothelial growth factor (VEGF). These data demonstrate that the development of cardiac hypertrophy in AhR−/− mice is not associated with myocardial hypoxia, but is correlated with increased cardiac HIF-1α protein and VEGF mRNA expression.


Toxicological Sciences | 2010

Cytochrome P4501A1 Is Required for Vascular Dysfunction and Hypertension Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin

Phillip G. Kopf; Jason A. Scott; Larry N. Agbor; Jason R. Boberg; Khalid M. Elased; Janice K. Huwe; Mary K. Walker

National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAHs). Furthermore, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (ROS), endothelial dysfunction, and hypertension. Because TCDD induces cytochrome P4501A1 (CYP1A1) and CYP1A1 can increase ROS, we tested the hypothesis that TCDD-induced endothelial dysfunction and hypertension are mediated by CYP1A1. CYP1A1 wild-type (WT) and knockout (KO) mice were fed one control or TCDD-containing pill (180 ng TCDD/kg, 5 days/week) for 35 days (n = 10-14/genotype/treatment). Blood pressure was monitored by radiotelemetry, and liver TCDD concentration, CYP1A1 induction, ROS, and aortic reactivity were measured at 35 days. TCDD accumulated to similar levels in livers of both genotypes. TCDD induced CYP1A1 in endothelium of aorta and mesentery without detectable expression in the vessel wall. TCDD also induced superoxide anion production, measured by NADPH-dependent lucigenin luminescence, in aorta, heart, and kidney of CYP1A1 WT mice but not KO mice. In contrast, TCDD induced hydrogen peroxide, measured by amplex red assay, to similar levels in aorta of CYP1A1 WT and KO mice but not in heart or kidney. TCDD reduced acetylcholine-dependent vasorelaxation in aortic rings of CYP1A1 WT mice but not in KO mice. Finally, TCDD steadily increased blood pressure after 15 days, which plateaued after 25 days (+20 mmHg) in CYP1A1 WT mice but failed to alter blood pressure in KO mice. These results demonstrate that CYP1A1 is required for TCDD-induced cardiovascular superoxide anion production, endothelial dysfunction, and hypertension.


Hypertension | 2012

Deletion of G Protein–Coupled Estrogen Receptor Increases Endothelial Vasoconstriction

Matthias R. Meyer; Kerstin Amann; Angela S. Field; Chelin Hu; Helen J. Hathaway; Nancy L. Kanagy; Mary K. Walker; Matthias Barton; Eric R. Prossnitz

Endogenous estrogens mediate protective effects in the cardiovascular system, affecting both endothelium-dependent and endothelium-independent mechanisms. Previous studies have suggested that nonselective estrogen receptor agonists such as endogenous estrogens inhibit endothelium-dependent vasoconstriction; however, the role of estrogen receptors in this response has not yet been clarified. This study investigated whether the intracellular transmembrane G protein–coupled estrogen receptor (GPER) regulates vascular reactivity in mice. Effects of chronic deficiency (using mice lacking the GPER gene) and acute inhibition (using the GPER-selective antagonist G15) on endothelium-dependent and endothelium-independent vascular reactivity, and the effects of GPER deficiency on vascular gene expression and structure were investigated. We found that chronic GPER deficiency is associated with increased endothelial prostanoid-mediated vasoconstriction but has no effect on endothelial nitric oxide bioactivity, gene expression of endothelial nitric oxide synthase and thromboxane prostanoid (TP) receptor, or vascular structure. GPER deletion also increases TP receptor–mediated contraction. Acute GPER blockade enhances endothelium-dependent contractions and reduces endothelial nitric oxide bioactivity. Contractions in response to TP receptor activation are unaffected by G15. In conclusion, this study identifies GPER as the first estrogen receptor with inhibitory activity on endothelium-dependent contractility. These findings may be important for understanding and treating diseases associated with increased endothelial vasoconstrictor prostanoid activity such as hypertension and obesity.


Hypertension | 2008

Loss of the Aryl Hydrocarbon Receptor Induces Hypoxemia, Endothelin-1, and Systemic Hypertension at Modest Altitude

Amie K. Lund; Larry N. Agbor; Nan Zhang; Amy Baker; Huawei Zhao; Gregory D. Fink; Nancy L. Kanagy; Mary K. Walker

The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix Per-Arnt-Sim transcription factor that mediates induction of metabolic enzymes and toxicity of certain environmental pollutants. Although AHR knockout (KO) mice develop cardiac hypertrophy, conflicting reports associate this pathology with hypotension or endothelin (ET)-1–dependent hypertension. Because hypertension occurred at modest altitude, we tested the hypothesis that loss of AHR increases the sensitivity to hypoxia-induced ET-1, contributing to systemic hypertension. We found that AHR KO mice were hypertensive at modest altitude (1632 m) but hypotensive at low altitude (225 m). When AHR KO mice residing at 1632 m were exposed to the partial pressure of inspired oxygen (PIO2) at sea level for 11 days, blood pressure declined to levels measured at 225 m. Although plasma ET-1 in AHR KO mice was significantly elevated at 1632 m and decreased at 225 m and sea level PIO2, pulmonary prepro-ET-1 mRNA was significantly reduced at 1632 m and decreased further at 225 m and sea level PIO2. Blood gas analysis revealed that AHR KO mice were hypoxemic, hypercapnic, and acidotic at 1632 m, values that were attenuated and normalized after 24 hours and 11 days under sea level PIO2, respectively. Lastly, AHR inactivation in endothelial cells by small interfering RNA significantly reduced basal prepro-ET-1 mRNA but did not alter hypoxia-induced expression. Our studies establish the AHR KO mouse as a model in which modest decreases in PIO2 lead to hypoxemia, increased plasma ET-1, and systemic hypertension without increased pulmonary prepro-ET-1 mRNA expression.


Toxicology and Applied Pharmacology | 2012

Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega-3 polyunsaturated fatty acids.

Larry N. Agbor; Mary T. Walsh; Jason R. Boberg; Mary K. Walker

In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega-3 polyunsaturated fatty acids (n-3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n-3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice±NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA±inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mmHg, WT 103±1, KO 116±1, n=5/genotype, p<0.05), and exhibited a reduced heart rate (beats per minute, WT 575±5; KO 530±7; p<0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n-3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP.


American Journal of Physiology-heart and Circulatory Physiology | 2008

NFATc3 is required for intermittent hypoxia-induced hypertension

Sergio de Frutos; Laura Duling; Dominique Alo; Tammy Berry; Olan Jackson-Weaver; Mary K. Walker; Nancy L. Kanagy; Laura V. Gonzalez Bosc

Sleep apnea, defined as intermittent respiratory arrest during sleep, is associated with increased incidence of hypertension and peripheral vascular disease. Exposure of rodents to brief periods of intermittent hypercarbia/hypoxia (H-IH) during sleep mimics the cyclical hypoxia-normoxia of sleep apnea. Endothelin-1, an upstream activator of nuclear factor of activated T cells (NFAT), is increased during H-IH. Therefore, we hypothesized that NFATc3 is activated by H-IH and is required for H-IH-induced hypertension. Consistent with this hypothesis, we found that H-IH (20 brief exposures per hour to 5% O(2)-5% CO(2) for 7 h/day) induces systemic hypertension in mice [mean arterial pressure (MAP) = 97 +/- 2 vs. 124 +/- 2 mmHg, P < 0.05, n = 5] and increases NFATc3 transcriptional activity in aorta and mesenteric arteries. Cyclosporin A, an NFAT inhibitor, and genetic ablation of NFATc3 [NFATc3 knockout (KO)] prevented NFAT activation. More importantly, H-IH-induced hypertension was attenuated in cyclosporin A-treated mice and prevented in NFATc3 KO mice. MAP was significantly elevated in wild-type mice (Delta = 23.5 +/- 6.1 mmHg), but not in KO mice (Delta = -3.9 +/- 5.7). These results indicate that H-IH-induced increases in MAP require NFATc3 and that NFATc3 may contribute to the vascular changes associated with H-IH-induced hypertension.


Toxicology and Applied Pharmacology | 2012

A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice.

Mary K. Walker; Jason R. Boberg; Mary T. Walsh; Valerie Wolf; Alishia Trujillo; Melissa Skelton Duke; Rupert Palme; Linda A. Felton

Oral gavage dosing can induce stress and potentially confound experimental measurements, particularly when blood pressure and heart rate are endpoints of interest. Thus, we developed a pill formulation that mice would voluntarily consume and tested the hypothesis that pill dosing would be significantly less stressful than oral gavage. C57Bl/6 male mice were singly housed and on four consecutive days were exposed to an individual walking into the room (week 1, control), a pill being placed into the cage (week 2), and a dose of water via oral gavage (week 3). Blood pressure and heart rate were recorded by radiotelemetry continuously for 5h after treatment, and feces collected 6-10h after treatment for analysis of corticosterone metabolites. Both pill and gavage dosing significantly increased mean arterial pressure (MAP) during the first hour, compared to control. However, the increase in MAP was significantly greater after gavage and remained elevated up to 5h, while MAP returned to normal within 2h after a pill. Neither pill nor gavage dosing significantly increased heart rate during the first hour, compared to control; however, pill dosing significantly reduced heart rate while gavage significantly increased heart rate 2-5h post dosing. MAP and heart rate did not differ 24h after dosing. Lastly, only gavage dosing significantly increased fecal corticosterone metabolites, indicating a systemic stress response via activation of the hypothalamic-pituitary-adrenal axis. These data demonstrated that this pill dosing method of mice is significantly less stressful than oral gavage.


Biochemical Pharmacology | 2010

An activated renin-angiotensin system maintains normal blood pressure in aryl hydrocarbon receptor heterozygous mice but not in null mice.

Nan Zhang; Larry N. Agbor; Jason A. Scott; Tyler Zalobowski; Khalid M. Elased; Alicia Trujillo; Melissa Skelton Duke; Valerie Wolf; Mary T. Walsh; Jerry L. Born; Linda A. Felton; Jian Wang; Wei Wang; Nancy L. Kanagy; Mary K. Walker

It has been postulated that fetal vascular abnormalities in aryl hydrocarbon receptor null (ahr(-/-)) mice may alter cardiovascular homeostasis in adulthood. We tested the hypothesis that blood pressure regulation in adult heterozygous mice (ahr(+/-)) would be normal, compared to ahr(-/-) mice, since no vascular abnormalities have been reported in the heterozygote animals. Mean arterial blood pressure (MAP) was measured using radiotelemetry prior to and during treatment with inhibitors of the autonomic nervous system, nitric oxide synthase (NOS), angiotensin converting enzyme (ACE), or endothelin-1 A receptor (ET(A)). Also, indices of renin-angiotensin system (RAS) activation were measured. ahr(+/-) and ahr(-/-) mice were normotensive and hypotensive, respectively, compared to wild-type (ahr(+/+)) littermates. Responses of all genotypes to autonomic nervous system inhibition were normal. ahr(+/-) mice responded normally to NOS inhibition, while the responses of ahr(-/-) mice were significantly blunted. In contrast, ahr(+/-) mice were significantly more responsive to inhibition of ACE, an ET(A) antagonist, or both, while ahr(-/-) mice were significantly less responsive to ACE inhibition and more responsive to an ET(A) antagonist. ahr(+/-) mice also exhibited significant increases in plasma renin and ACE activity, plasma sodium, and urine osmolality, indicative of RAS activation. Thus, normotension in ahr(+/-) mice appears to be maintained by increased RAS and ET-1 signaling, while hypotension in ahr(-/-) mice may result from decreased RAS signaling. In conclusion, despite the lack of overt fetal vascular abnormalities in ahr(+/-) mice, the loss of a single ahr allele has a significant effect on blood pressure regulation.

Collaboration


Dive into the Mary K. Walker's collaboration.

Top Co-Authors

Avatar

Larry N. Agbor

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary T. Walsh

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Richard E. Peterson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Elani F. Wiest

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Amie K. Lund

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip G. Kopf

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice K. Huwe

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge