Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary K. Wojczynski is active.

Publication


Featured researches published by Mary K. Wojczynski.


Diabetes Care | 2010

Interactions of dietary whole grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies

Jennifer A. Nettleton; Nicola M. McKeown; Stavroula Kanoni; Rozenn N. Lemaitre; Marie-France Hivert; Julius S. Ngwa; Frank J. A. van Rooij; Emily Sonestedt; Mary K. Wojczynski; Zheng Ye; Toshisko Tanaka

OBJECTIVE Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS Via meta-analysis of data from 14 cohorts comprising ∼48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: −0.009 mmol/l glucose [−0.013 to −0.005], P < 0.0001 and −0.011 pmol/l [ln] insulin [−0.015 to −0.007], P = 0.0003). No interactions met our multiple testing–adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.


The American Journal of Clinical Nutrition | 2013

Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake

Toshiko Tanaka; Julius S. Ngwa; Frank J. A. van Rooij; M. Carola Zillikens; Mary K. Wojczynski; Alexis C. Frazier-Wood; Denise K. Houston; Stavroula Kanoni; Rozenn N. Lemaitre; Jian'an Luan; Vera Mikkilä; Frida Renström; Emily Sonestedt; Jing Hua Zhao; Audrey Y. Chu; Lu Qi; Daniel I. Chasman; Marcia C. de Oliveira Otto; Emily J. Dhurandhar; Mary F. Feitosa; Ingegerd Johansson; Kay-Tee Khaw; Kurt Lohman; Ani Manichaikul; Nicola M. McKeown; Dariush Mozaffarian; Andrew Singleton; Kathleen Stirrups; Jorma Viikari; Zheng Ye

Background: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. Design: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10−6 were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data. Results: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10−8) and lower fat (β ± SE: −0.21 ± 0.04%; P = 1.57 × 10−9) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)–increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10−10), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10−7). Conclusion: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).


PLOS Genetics | 2013

Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci

Ching-Ti Liu; Keri L. Monda; Kira C. Taylor; Leslie A. Lange; Ellen W. Demerath; Walter Palmas; Mary K. Wojczynski; Jaclyn C. Ellis; Mara Z. Vitolins; Simin Liu; George J. Papanicolaou; Marguerite R. Irvin; Luting Xue; Paula J. Griffin; Michael A. Nalls; Adebowale Adeyemo; Jiankang Liu; Guo Li; Edward A. Ruiz-Narváez; Wei-Min Chen; Fang Chen; Brian E. Henderson; Robert C. Millikan; Christine B. Ambrosone; Sara S. Strom; Xiuqing Guo; Jeanette S. Andrews; Yan V. Sun; Thomas H. Mosley; Lisa R. Yanek

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.


Diabetes | 2011

Total Zinc Intake May Modify the Glucose-Raising Effect of a Zinc Transporter (SLC30A8) Variant: A 14-Cohort Meta-analysis

Stavroula Kanoni; Jennifer A. Nettleton; Marie-France Hivert; Zheng Ye; Frank J. A. van Rooij; Dmitry Shungin; Emily Sonestedt; Julius S. Ngwa; Mary K. Wojczynski; Rozenn N. Lemaitre; Stefan Gustafsson; Jennifer S. Anderson; Toshiko Tanaka; George Hindy; Georgia Saylor; Frida Renström; Amanda J. Bennett; Cornelia M. van Duijn; Jose C. Florez; Caroline S. Fox; Albert Hofman; Ron C. Hoogeveen; Denise K. Houston; Frank B. Hu; Paul F. Jacques; Ingegerd Johansson; Lars Lind; Yongmei Liu; Nicola M. McKeown; Jose M. Ordovas

OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: −0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: −0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.


American Journal of Epidemiology | 2013

Meta-Analysis Investigating Associations Between Healthy Diet and Fasting Glucose and Insulin Levels and Modification by Loci Associated With Glucose Homeostasis in Data From 15 Cohorts

Jennifer A. Nettleton; Marie-France Hivert; Rozenn N. Lemaitre; Nicola M. McKeown; Dariush Mozaffarian; Toshiko Tanaka; Mary K. Wojczynski; Adela Hruby; Luc Djoussé; Julius S. Ngwa; Jack L. Follis; Maria Dimitriou; Andrea Ganna; Denise K. Houston; Stavroula Kanoni; Vera Mikkilä; Ani Manichaikul; Ioanna Ntalla; Frida Renström; Emily Sonestedt; Frank J. A. van Rooij; Stefania Bandinelli; Lawrence de Koning; Ulrika Ericson; Neelam Hassanali; Jessica C. Kiefte-de Jong; Kurt Lohman; Olli T. Raitakari; Constantina Papoutsakis; Per Sjögren

Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 U.S. and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (β = -0.004 mmol/L, 95% confidence interval: -0.005, -0.003) and FI (β = -0.008 ln-pmol/L, 95% confidence interval: -0.009, -0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.


Journal of Nutrition | 2013

Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies

Adela Hruby; Julius S. Ngwa; Frida Renström; Mary K. Wojczynski; Andrea Ganna; Göran Hallmans; Denise K. Houston; Paul F. Jacques; Stavroula Kanoni; Terho Lehtimäki; Rozenn N. Lemaitre; Ani Manichaikul; Kari E. North; Ioanna Ntalla; Emily Sonestedt; Toshiko Tanaka; Frank J. A. van Rooij; Stefania Bandinelli; Luc Djoussé; Efi Grigoriou; Ingegerd Johansson; Kurt Lohman; James S. Pankow; Olli T. Raitakari; Ulf Risérus; Mary Yannakoulia; M. Carola Zillikens; Neelam Hassanali; Yongmei Liu; Dariush Mozaffarian

Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = -0.009 mmol/L (95% CI: -0.013, -0.005), P < 0.0001] and insulin [-0.020 ln-pmol/L (95% CI: -0.024, -0.017), P < 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted.


BMC Medical Genetics | 2013

Genetics of coronary artery calcification among African Americans, a meta-analysis

Mary K. Wojczynski; Mingyao Li; Lawrence F. Bielak; Kathleen F. Kerr; Alex P. Reiner; Nathan D. Wong; Lisa R. Yanek; Liming Qu; Charles C. White; Leslie A. Lange; Jane F. Ferguson; Jing He; Taylor Young; Thomas H. Mosley; Jennifer A. Smith; Brian G. Kral; Xiuqing Guo; Quenna Wong; Santhi K. Ganesh; Susan R. Heckbert; Michael Griswold; Daniel H. O’Leary; Matthew J. Budoff; J. Jeffrey Carr; Herman A. Taylor; David A. Bluemke; Serkalem Demissie; Shih-Jen Hwang; Dina N. Paltoo; Joseph F. Polak

BackgroundCoronary heart disease (CHD) is the major cause of death in the United States. Coronary artery calcification (CAC) scores are independent predictors of CHD. African Americans (AA) have higher rates of CHD but are less well-studied in genomic studies. We assembled the largest AA data resource currently available with measured CAC to identify associated genetic variants.MethodsWe analyzed log transformed CAC quantity (ln(CAC + 1)), for association with ~2.5 million single nucleotide polymorphisms (SNPs) and performed an inverse-variance weighted meta-analysis on results for 5,823 AA from 8 studies. Heritability was calculated using family studies. The most significant SNPs among AAs were evaluated in European Ancestry (EA) CAC data; conversely, the significance of published SNPs for CAC/CHD in EA was queried within our AA meta-analysis.ResultsHeritability of CAC was lower in AA (~30%) than previously reported for EA (~50%). No SNP reached genome wide significance (p < 5E-08). Of 67 SNPs with p < 1E-05 in AA there was no evidence of association in EA CAC data. Four SNPs in regions previously implicated in CAC/CHD (at 9p21 and PHACTR1) in EA reached nominal significance for CAC in AA, with concordant direction. Among AA, rs16905644 (p = 4.08E-05) had the strongest association in the 9p21 region.ConclusionsWhile we observed substantial heritability for CAC in AA, we failed to identify loci for CAC at genome-wide significant levels despite having adequate power to detect alleles with moderate to large effects. Although suggestive signals in AA were apparent at 9p21 and additional CAC and CAD EA loci, overall the data suggest that even larger samples and an ethnic specific focus will be required for GWAS discoveries for CAC in AA populations.


Human Molecular Genetics | 2015

Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry

Jennifer A. Nettleton; Jack L. Follis; Julius S. Ngwa; Caren E. Smith; Shafqat Ahmad; Toshiko Tanaka; Mary K. Wojczynski; Trudy Voortman; Rozenn N. Lemaitre; Kati Kristiansson; Marja-Liisa Nuotio; Denise K. Houston; Mia-Maria Perälä; Qibin Qi; Emily Sonestedt; Ani Manichaikul; Stavroula Kanoni; Andrea Ganna; Vera Mikkilä; Kari E. North; David S. Siscovick; Kennet Harald; Nicola M. McKeown; Ingegerd Johansson; Harri Rissanen; Yongmei Liu; Jari Lahti; Frank B. Hu; Stefania Bandinelli; Gull Rukh

Abstract Obesity is highly heritable. Genetic variants showing robust associations with obesity traits have been identified through genome-wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist–hip ratio (WHR)-associated single nucleotide polymorphisms were genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjusted WHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006–0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.


Advances in Genetics | 2008

Definition of Phenotype

Mary K. Wojczynski; Hemant K. Tiwari

Definition of the phenotype is crucial in designing any genetic study, especially an association study, intended to detect the disease predisposing genes. In this chapter, we review the different types of phenotypes such as discrete or continuous and discuss the issues impacting on the phenotype definition related to study design, specifically, the impact of diagnostic error (misclassification) in case-control studies and measurement error in continuous traits. We show that the power of a study depends heavily on the phenotype measured and that misclassification or measurement error can dramatically reduce the power. We also suggest some possible responses to these challenges.


International Journal of Obesity | 2013

PNPLA3 gene-by-visceral adipose tissue volume interaction and the pathogenesis of fatty liver disease: the NHLBI family heart study.

Misa Graff; Kari E. North; N Franceschini; Alex P. Reiner; Mary F. Feitosa; J. Jeffrey Carr; Penny Gordon-Larsen; Mary K. Wojczynski; Ingrid B. Borecki

BACKGROUND:Fatty liver disease (FLD) is characterized by increased intrahepatic triglyceride content with or without inflammation and is associated with obesity, and features of the metabolic syndrome. Several recent genome-wide association studies have reported an association between single-nucleotide polymorphism rs738409 in the (patatin-like phospholipase domain-containing protein 3) PNPLA3 gene and FLD. Liver attenuation (LA; hounsfield units, HU) by computed tomography is a non-invasive measure of liver fat, with lower values of HU indicating higher liver fat content. Clinically, a LA value of ⩽40 HU indicates moderate-to-severe hepatic steatosis.OBJECTIVE:We investigated whether missense rs738409 PNPLA3 interacted with abdominal visceral adipose tissue (VAT) volume (cm3) to reduce LA (that is, increased liver fat) in 1019 European American men and 1238 European American women from the Family Heart Study.METHODS:We used linear regression to test the additive effect of genotype, abdominal VAT, and their multiplicative interaction on LA adjusted for age, body mass index, high-density lipoprotein-cholesterol, insulin resistance, serum triglycerides, abdominal subcutaneous adipose tissue and alcohol intake.RESULTS:In men and women combined, the interaction between each copy of the rs738409 variant allele (minor allele frequency 0.23) and 100 cm3/150 mm slice VAT decreased LA by 2.68±0.35 HU (P<0.01). The interaction of 100 cm3 VAT and the variant allele was associated with a greater decrease in LA in women than men (−4.8±0.6 and −2.2±0.5 HU, respectively).CONCLUSIONS:The interaction between genotype and VAT volume suggest key differences in the role of PNPLA3 genotype in conjunction with abdominal VAT in liver fat accrual. The stronger association of the PNPLA3 genotype and liver fat in women suggests that women may be more sensitive to liver fat accumulation in the setting of increased visceral fat, compared with men. The presence of the PNPLA3 variant genotype, particularly in the context of high VAT content may have an important role in FLD.

Collaboration


Dive into the Mary K. Wojczynski's collaboration.

Top Co-Authors

Avatar

Mary F. Feitosa

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ingrid B. Borecki

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kari E. North

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiko Tanaka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Province

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge