Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Law is active.

Publication


Featured researches published by Mary Law.


Cancer Research | 2006

Rapamycin Disrupts Cyclin/Cyclin-Dependent Kinase/p21/Proliferating Cell Nuclear Antigen Complexes and Cyclin D1 Reverses Rapamycin Action by Stabilizing These Complexes

Mary Law; Elizabeth Forrester; Anna Chytil; Patrick E. Corsino; Gail Green; Bradley J. Davis; Thomas C. Rowe; Brian K. Law

Rapamycin and its derivatives are promising anticancer agents, but the exact mechanisms by which these drugs induce cell cycle arrest and inhibit tumor growth are unknown. A biochemical analysis of human mammary tumor cell lines indicated that rapamycin-induced antiproliferative effects correlated with down-regulation of cellular p21 levels and the levels of p21 in cyclin-dependent kinase (Cdk) 2 and 4 complexes. Cyclin D1 overexpression reversed rapamycin action and this reversal correlated with increased levels of cellular p21, higher levels of p21 associated with Cdk2, and stabilization of cyclin D1/Cdk2/p21/proliferating cell nuclear antigen (PCNA) complexes. Experiments using a novel cyclin D1-Cdk2 fusion protein or a kinase-dead mutant of the fusion protein indicated that reversal of rapamycin action required not only the formation of complexes with p21 and PCNA but also complex-associated kinase activity. Similar results were observed in vivo. The rapamycin derivative RAD001 (everolimus) inhibited the growth of mouse mammary tumors, which correlated with the disruption of cyclin D1/Cdk2 complexes. The potential implications of these results with respect to the use of rapamycin derivatives in breast cancer therapy are discussed.


Oncogene | 2013

Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

Mary Law; Patrick E. Corsino; Stephan C. Jahn; Bradley J. Davis; Sixue Chen; Patel B; Kien Pham; Jianrong Lu; Barbara J. Sheppard; Peter Nørgaard; Jiyong Hong; Paul J. Higgins; Jae-Sung Kim; Hendrik Luesch; Brian K. Law

Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin.


Cancer Research | 2007

Tumors Initiated by Constitutive Cdk2 Activation Exhibit Transforming Growth Factor β Resistance and Acquire Paracrine Mitogenic Stimulation during Progression

Patrick E. Corsino; Bradley J. Davis; Mary Law; Anna Chytil; Elizabeth Forrester; Peter Nørgaard; Nicole Teoh; Brian K. Law

Cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes are present at high frequency in human breast cancer cell lines, but the significance of this observation is unknown. This report shows that expression of a cyclin D1-Cdk2 fusion protein under the control of the mouse mammary tumor virus (MMTV) promoter results in mammary gland hyperplasia and fibrosis, and mammary tumors. Cell lines isolated from MMTV-cyclin D1-Cdk2 (MMTV-D1K2) tumors exhibit Rb and p130 hyperphosphorylation and up-regulation of the protein products of E2F-dependent genes. These results suggest that cyclin D1/Cdk2 complexes may mediate some of the transforming effects that result from cyclin D1 overexpression in human breast cancers. MMTV-D1K2 cancer cells express the hepatocyte growth factor (HGF) receptor, c-Met. MMTV-D1K2 cancer cells also secrete transforming growth factor beta (TGFbeta), but are relatively resistant to TGFbeta antiproliferative effects. Fibroblasts derived from MMTV-D1K2 tumors secrete factors that stimulate the proliferation of MMTV-D1K2 cancer cells, stimulate c-Met tyrosine phosphorylation, and stimulate the phosphorylation of the downstream signaling intermediates p70(s6k) and Akt on activating sites. Together, these results suggest that deregulation of the Cdk/Rb/E2F axis reprograms mammary epithelial cells to initiate a paracrine loop with tumor-associated fibroblasts involving TGFbeta and HGF, resulting in desmoplasia. The MMTV-D1K2 mice should provide a useful model system for the development of therapeutic approaches to block the stromal desmoplastic reaction that likely plays an important role in the progression of multiple types of human tumors.


Semiconductor Science and Technology | 2013

Reliability studies of AlGaN/GaN high electron mobility transistors

David Cheney; E. A. Douglas; Li Liu; Chien-Fong Lo; Yuyin Xi; B. P. Gila; F. Ren; David Horton; Mary Law; David J. Smith; S. J. Pearton

AlGaN/GaN high electron mobility transistors are gaining commercial acceptance for use in high power and high frequency applications, but the degradation mechanisms that drive failure in the field are not completely understood. Since some of these mechanisms are current or field driven, reliability studies must go beyond the typical Arrhenius-accelerated life tests. In this paper, we summarize recent work on electric field or current driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plates) and the effect of device fabrication processes for both dc and RF stress conditions.


Cancer Letters | 2012

An in vivo model of epithelial to mesenchymal transition reveals a mitogenic switch

Stephan C. Jahn; Mary Law; Patrick E. Corsino; Nicole N. Parker; Kien Pham; Bradley J. Davis; Jianrong Lu; Brian K. Law

The epithelial to mesenchymal transition (EMT) is a process by which differentiated epithelial cells transition to a mesenchymal phenotype. EMT enables the escape of epithelial cells from the rigid structural constraints of the tissue architecture to a phenotype more amenable to cell migration and, therefore, invasion and metastasis. We characterized an in vivo model of EMT and discovered that marked changes in mitogenic signaling occurred during this process. DNA microarray analysis revealed that the expression of a number of genes varied significantly between post-EMT and pre-EMT breast cancer cells. Post-EMT cancer cells upregulated mRNA encoding c-Met and the PDGF and LPA receptors, and acquired increased responsiveness to HGF, PDGF, and LPA. This rendered the post-EMT cells responsive to the growth inhibitory effects of HGF, PDGF, and LPA receptor inhibitors/antagonists. Furthermore, post-EMT cells exhibited decreased basal Raf and Erk phosphorylation, and in comparison to pre-EMT cells, their proliferation was poorly inhibited by a MEK inhibitor. These studies suggest that therapies need to be designed to target both pre-EMT and post-EMT cancer cells and that signaling changes in post-EMT cells may allow them to take advantage of paracrine signaling from the stroma in vivo.


Journal of Biological Chemistry | 2009

A Novel Class of Cyclin-dependent Kinase Inhibitors Identified by Molecular Docking Act through a Unique Mechanism

Patrick E. Corsino; Nicole A. Horenstein; David A. Ostrov; Thomas C. Rowe; Mary Law; Amanda Barrett; George Aslanidi; W. Douglas Cress; Brian K. Law

The cyclin-dependent kinase (Cdk) family is emerging as an important therapeutic target in the treatment of cancer. Cdks 1, 2, 4, and 6 are the key members that regulate the cell cycle, as opposed to Cdks that control processes such as transcription (Cdk7 and Cdk9). For this reason, Cdks 1, 2, 4, and 6 have been the subject of extensive cell cycle-related research, and consequently many inhibitors have been developed to target these proteins. However, the compounds that comprise the current list of Cdk inhibitors are largely ATP-competitive. Here we report the identification of a novel structural site on Cdk2, which is well conserved between the cell cycle Cdks. Small molecules identified by a high throughput in silico screen of this pocket exhibit cytostatic effects and act by reducing the apparent protein levels of cell cycle Cdks. Drug-induced cell cycle arrest is associated with decreased Rb phosphorylation and decreased expression of E2F-dependent genes. Multiple lines of evidence indicate that the primary mechanism of action of these compounds is the direct induction of Cdk1, Cdk2, and Cdk4 protein aggregation.


Cancer Letters | 2009

Identification of genes, including the gene encoding p27Kip1, regulated by serine 276 phosphorylation of the p65 subunit of NF-κB

Ratna Prasad; Xiaohui L. Wang; Brian K. Law; Bradley J. Davis; Gail Green; Braden Boone; Lauren Sims; Mary Law

Phosphorylation of the p65 subunit of NF-kappaB is required for its transcriptional activity. Recent reports show that phosphorylation of p65 at serine 276 regulates only a subset of genes, such as those encoding IL-6, IL-8, Gro-beta, and ICAM-1. In order to identify additional genes regulated by serine 276 phosphorylation, HepG2 hepatoma cells were infected with adenoviruses encoding either wild-type p65 or the S276A mutant of p65, followed by DNA microarray analysis. The results show that mutation of serine 276 affected the expression of several genes that encode proteins involved in cell cycle regulation, signal transduction, transcription, and metabolism. Notably, expression of S276A increased the mRNA and protein level of p27, a cell cycle inhibitory protein, which led to an increased association of p27 with cdk2, and inhibition of cdk2 activity. Furthermore, while wild-type NF-kappaB is known to increase cell proliferation in a number of different cancer cell lines, our data shows that S276A inhibited cell proliferation. Evidence is mounting that NF-kappaB plays a pivotal role in oncogenesis. Therapeutic agents that regulate the phosphorylation of serine 276 and p27 gene expression, therefore, may be useful as anti-cancer agents in the future.


IEEE Transactions on Nuclear Science | 2008

Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling

Iskander G. Batyrev; David Russell Hughart; R. Durand; M. Bounasser; B. R. Tuttle; Daniel M. Fleetwood; Ronald D. Schrimpf; Sergey N. Rashkeev; G. W. Dunham; Mary Law; Sokrates T. Pantelides

Reactions of H2 in lateral PNP BJTs are investigated through experiments and simulations. Pre-irradiation hydrogen exposure makes the devices more sensitive to ionizing radiation, which is explained through first-principles calculations and numerical simulations. Mechanisms for the cracking of hydrogen molecules and proton generation are proposed. We also suggest a mechanism of formation of border traps. When protons are trapped by oxygen vacancies right at or very near the interface, they form electrically active defects near the middle of the band gap. Activation energies of the reaction are used to construct rate equations. The rate equations are solved numerically to determine the spatial and temporal concentrations of hydrogen, holes, and protons. The calculated concentrations of interface and border traps agree well with the experimental results and help to explain the role of hydrogen in determining the total-dose response of BJTs.


Applied Physics Letters | 2014

Concentration-dependent diffusion of ion-implanted silicon in In0.53Ga0.47As

Henry Aldridge; Aaron G. Lind; Mary Law; Christopher R. Hatem; K. S. Jones

In contrast to prior reports, evidence of concentration-dependent diffusion is reported for Si implanted In0.53Ga0.47As. The Fickian and concentration-dependent components of diffusivities were extracted using the Florida object oriented process and device simulator. The migration energy for silicon diffusion in In0.53Ga0.47As was calculated to be 2.4 and 1.5u2009eV for the Fickian and concentration dependent components of diffusion, respectively. A lack of change in diffusivities at given anneal temperatures suggest that transient-enhanced diffusion has not occurred. Due to these findings, silicon diffusion at high doping concentrations (>1u2009×u20091020u2009cm−3) should be better characterized and understood for future complimentary metal-oxide semiconductor applications.


Biochemistry | 2013

Assembly, activation, and substrate specificity of cyclin D1/Cdk2 complexes.

Stephan C. Jahn; Mary Law; Patrick E. Corsino; Thomas C. Rowe; Bradley J. Davis; Brian K. Law

Previous studies have shown conflicting data regarding cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes, and considering the widespread overexpression of cyclin D1 in cancer, it is important to fully understand their relevance. While many have shown that cyclin D1 and Cdk2 form active complexes, others have failed to show activity or association. Here, using a novel p21-PCNA fusion protein as well as p21 mutant proteins, we show that p21 is a required scaffolding protein, with cyclin D1 and Cdk2 failing to complex in its absence. These p21/cyclin D1/Cdk2 complexes are active and also bind the trimeric PCNA complex, with each trimer capable of independently binding distinct cyclin/Cdk complexes. We also show that increased p21 levels due to treatment with chemotherapeutic agents result in increased formation and kinase activity of cyclin D1/Cdk2 complexes, and that cyclin D1/Cdk2 complexes are able to phosphorylate a number of substrates in addition to Rb. Nucleophosmin and Cdh1, two proteins important for centrosome replication and implicated in the chromosomal instability of cancer, are shown to be phosphorylated by cyclin D1/Cdk2 complexes. Additionally, polypyrimidine tract binding protein-associated splicing factor (PSF) is identified as a novel Cdk2 substrate, being phosphorylated by Cdk2 complexed with either cyclin E or cyclin D1, and given the many functions of PSF, it could have important implications on cellular activity.

Collaboration


Dive into the Mary Law's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge