Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Lou Cutler is active.

Publication


Featured researches published by Mary Lou Cutler.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations

Chong Feng Gao; Kyle A. Furge; Julie Koeman; Karl Dykema; Yanli Su; Mary Lou Cutler; Adam Werts; Pete Haak; George F. Vande Woude

Chromosome instability and aneuploidy are hallmarks of cancer, but it is not clear how changes in the chromosomal content of a cell contribute to the malignant phenotype. Previously we have shown that we can readily isolate highly proliferative tumor cells and their revertants from highly invasive tumor cell populations, indicating how phenotypic shifting can contribute to malignant progression. Here we show that chromosome instability and changes in chromosome content occur with phenotypic switching. Further, we show that changes in the copy number of each chromosome quantitatively impose a proportional change in the chromosome transcriptome ratio. This correlation also applies to subchromosomal regions of derivative chromosomes. Importantly, we show that the changes in chromosome content and the transcriptome favor the expression of a large number of genes appropriate for the specific tumor phenotype. We conclude that chromosome instability generates the necessary chromosome diversity in the tumor cell populations and, therefore, the transcriptome diversity to allow for environment-facilitated clonal expansion and clonal evolution of tumor cell populations.


BMC Cell Biology | 2006

EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation

Traci Galbaugh; Maria Grazia Cerrito; Cynthia C Jose; Mary Lou Cutler

BackgroundHC11 mouse mammary epithelial cells differentiate in response to lactogenic hormone resulting in expression of milk proteins including β-casein. Previous studies have shown that epidermal growth factor (EGF) blocks differentiation not only through activation of the Ras/Mek/Erk pathway but also implicated phosphatidylinositol-3-kinase (PI-3-kinase) signaling. The current study analyzes the mechanism of the PI-3-kinase pathway in an EGF-induced block of HC11 lactogenic differentiation.ResultsHC11 and HC11-luci cells, which contain luciferase gene under the control of a β-casein promotor, were treated with specific chemical inhibitors of signal transduction pathways or transiently infected/transfected with vectors encoding dominant negative-Akt (DN-Akt) or conditionally active-Akt (CA-Akt). The expression of CA-Akt inhibited lactogenic differentiation of HC11 cells, and the infection with DN-Akt adenovirus enhanced β-casein transcription and rescued β-casein promotor-regulated luciferase activity in the presence of EGF. Treatment of cells with Rapamycin, an inhibitor of mTOR, blocked the effects of EGF on β-casein promotor driven luciferase activity as effectively as PI-3-kinase inhibitors. While expression of CA-Akt caused a constitutive activation of p70S6 kinase (p70S6K) in HC11 cells, the inhibition of either PI-3-kinase or mTOR abolished the activation of p70S6K by EGF. The activation of p70S6K by insulin or EGF resulted in the phosphorylation of ribosomal protein S6 (RPS6), elongation initiation factor 4E (elF4E) and 4E binding protein1 (4E-BP1). But lower levels of PI-3-K and mTOR inhibitors were required to block insulin-induced phosphorylation of RPS6 than EGF-induced phosphorylation, and insulin-induced phosphorylation of elF4E and 4E-BP1 was not completely mTOR dependent suggesting some diversity of signaling for EGF and insulin. In HC11 cells undergoing lactogenic differentiation the phosphorylation of p70S6K completely diminished by 12 hours, and this was partly attributable to dexamethasone, a component of lactogenic hormone mix. However, p70S6K phosphorylation persisted in the presence of lactogenic hormone and EGF, but the activation could be blocked by a PI-3-kinase inhibitor.ConclusionPI-3-kinase signaling contributes to the EGF block of lactogenic differentiation via Akt and p70S6K. The EGF-induced activation of PI-3-kinase-Akt-mTOR regulates phosphorylation of molecules including ribosomal protein S6, eIF4E and 4E-BP1 that influence translational control in HC11 cells undergoing lactogenic differentiation.


European Journal of Cell Biology | 2008

The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells.

Gerard W. Dougherty; Cynthia C Jose; Mario Gimona; Mary Lou Cutler

The link between Ras transformation and enhanced cell migration due to altered integrin signaling is well established in tumorigenesis, however there remain gaps in our understanding of its mechanism. The Ras suppressor, Rsu-1, has recently been linked to the IPP (integrin-linked kinase {ILK}, PINCH-1/LIMS1, parvin) focal adhesion complex based on its interaction with the LIM 5 domain of PINCH1. Defining the role of the Rsu1-PINCH1-ILK-parvin complex in tumorigenesis is important because both ILK and PINCH1 are elevated in certain tumors while ectopic expression of Rsu-1 blocks tumorigenesis. Our studies previously identified an alternatively spliced isoform of Rsu-1 in high-grade gliomas. We report here the detection of a truncated (p29) Rsu-1 protein, which correlates with the presence of the alternatively spliced Rsu-1 RNA. This RNA and the respective protein were detected in human tumor cell lines that contain high levels of activated Ras, and inhibitor studies demonstrate that the Mek-ERK pathway regulates expression of this truncated Rsu-1 product. We also show that Rsu-1 co-localizes with ILK at focal contacts and co-immunoprecipitates with the ILK-PINCH1 complex in non-transformed cells, but following Ras transformation the association of Rsu-1 with the PINCH1-ILK complex is greatly reduced. Using a human breast cancer cell line, our in vitro studies demonstrate that the depletion of Rsu-1 full-length protein enhances cell migration coincident with an increase in Rac-GTP while the depletion of the p29 Rsu-1 truncated protein inhibits migration. These findings indicate that Rsu-1 may inhibit cell migration by stabilizing the IPP adhesion complex and that Ras activation perturbs this inhibitory function by modulating both Rsu-1 splicing and association of full-length Rsu-1 with IPP. Hence, our findings demonstrate that Rsu-1 links the Ras pathway with the IPP complex and the perturbations of cell attachment-dependent signaling that occur in the malignant process.


Journal of Cellular Physiology | 2008

Glucocorticoid induced expression of connective tissue growth factor contributes to lactogenic differentiation of mouse mammary epithelial cells

Weihan Wang; Bethanie Morrison; Traci Galbaugh; Cynthia C Jose; Nicholas Kenney; Mary Lou Cutler

The response of mammary epithelial cells to basement membrane and stroma induced signals contributes to the degree of differentiation in this tissue. The studies reported here indicate that connective tissue growth factor (CTGF) is highly elevated during lactogenic differentiation of the HC11 mouse mammary epithelial cell line. In addition, CTGF is expressed in the mouse mammary gland during pregnancy and lactation and it is expressed in primary mammary epithelial cell cultures established from pregnant mice. In HC11 cells CTGF is transcriptionally regulated by dexamethasone, but not by estrogen or progesterone, and CTGF expression is not dependent on TGFβ. CTGF contributes to and is required for lactogenic differentiation of HC11 cells, as demonstrated by increased differentiation following expression of plasmid‐encoded CTGF and decreased differentiation following depletion of endogenous CTGF with siRNA. Moreover, HC11 mouse mammary epithelial cells infected with an adenoviral vector encoding CTGF exhibit increased lactogenic differentiation. Plasmid vector‐induced elevation of CTGF levels also increased the level of β1 integrin in HC11 cells. Because the production of stromal factors is an important component of differentiation in mammary epithelial cells, the regulation of CTGF by glucocorticoids may play a critical role in this aspect of the control of differentiation. The studies reported here provide important information on the role of CTGF in mammary epithelial cell differentiation. J. Cell. Physiol. 214:38–46, 2008.


Experimental Cell Research | 2015

Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth

Joji Iida; Jesse Dorchak; Rebecca Clancy; Juliana Slavik; Rachel E. Ellsworth; Yasuhiro Katagiri; Elena N. Pugacheva; Toin H. van Kuppevelt; Richard J. Mural; Mary Lou Cutler; Craig D. Shriver

There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the mechanisms of NEDD9-mediated cancer migration and growth, stable cells overexpressing NEDD9 were generated using HCC38 as a parental cell line which expresses low level of endogenous NEDD9. Microarray studies demonstrated that core proteins of CD44 and Serglycin were markedly upregulated in HCC38(NEDD9) cells compared to HCC38(Vector) cells, while those of Syndecan-1, Syndecan-2, and Versican were downregulated in HCC38(NEDD9). Importantly, enzymes generating chondroitin sulfate glycosaminoglycans (CS) such as CHST11, CHST15, and CSGALNACT1 were upregulated in HCC38(NEDD9) compared to HCC38(Vector). Immunofluorescence studies using specific antibody, GD3G7, confirmed the enhanced expression of CS-E subunit in HCC38(NEDD9). Immunoprecipitation and western blotting analysis demonstrated that CS-E was attached to CD44 core protein. We demonstrated that removing CS by chondroitinase ABC significantly inhibited anchorage-independent colony formation of HCC38(NEDD9) in methylcellulose. Importantly, the fact that GD3G7 significantly inhibited colony formation of HCC38(NEDD9) cells suggests that CS-E subunit plays a key role in this process. Furthermore, treatment of HCC38(NEDD9) cells with chondroitinase ABC or GD3G7 significantly inhibited mammosphere formation. Exogenous addition of CS-E enhanced colony formation and mammosphere formation of HCC38 parental and HCC38(Vector) cells. These results suggest that NEDD9 regulates the synthesis and expression of tumor associated glycocalyx structures including CS-E, which plays a key role in promoting and regulating breast cancer progression and metastasis and possibly stem cell phenotypes.


Journal of Cellular Physiology | 2004

Dominant negative Ras enhances lactogenic hormone-induced differentiation by blocking activation of the Raf–Mek–Erk signal transduction pathway†‡

Maria Grazia Cerrito; Traci Galbaugh; Weihan Wang; Treasa Chopp; David S. Salomon; Mary Lou Cutler

Epidermal growth factor (EGF) and Ras mitogenic signal transduction pathways are frequently activated in breast carcinoma and inhibit mammary differentiation and apoptosis. HC11 mouse mammary epithelial cells, which differentiate and synthesize β‐casein following growth to confluency and stimulation with lactogenic hormones, were used to study EGF‐dependent signaling during differentiation. Blocking Mek–Erk or phosphotidylinositol‐3‐kinase (PI‐3 kinase) signaling with specific chemical inhibitors enhanced β‐casein promotor‐driven luciferase activity. Because EGF stimulation of HC11 cells resulted in the activation of Ras, the effect of activated Ras (RasV12) or dominant negative (DNRasN17) on lactogen induced differentiation was examined. HC11 cell lines expressing RasV12 or DNRasN17 under the control of a tetracycline (tet)‐responsive promotor were constructed. Activated RasV12 expression resulted in reduced tyrosine phosphorylation of Stat5 and a delay in β‐casein expression in response to prolactin. However, the expression of tet‐regulated DNRasN17 and adenovirus‐encoded DNRasN17 enhanced Stat5 tyrosine phosphorylation, Stat5 DNA binding, and β‐casein transcription. The expression of DNRasN17 blocked the activation of the Mek–Erk pathway by EGF but did not prevent the phosphorylation of AKT, a measure of activation of the PI‐3‐kinase pathway. Moreover, the expression of DNRasN17 prevented the block to lactogenic differentiation induced by EGF. Stimulation of HC11 cells with prolactin resulted in the association of the SHP2 phosphatase with Stat5, and this association was prevented by DNRasN17 expression. These results demonstrate that in HC11 cells DNRas inhibits the Mek–Erk pathway and enhances lactogenic hormone‐induced differentiation. This occurs, in part, by inhibiting the association of the SHP2 phosphatase with Stat5. Published 2004 Wiley‐Liss, Inc.


PLOS ONE | 2014

DNA Aptamers against Exon v10 of CD44 Inhibit Breast Cancer Cell Migration

Joji Iida; Rebecca Clancy; Jesse Dorchak; Richard I. Somiari; Stella Somiari; Mary Lou Cutler; Richard J. Mural; Craig D. Shriver

CD44 adhesion molecules are expressed in many breast cancer cells and have been demonstrated to play a key role in regulating malignant phenotypes such as growth, migration, and invasion. CD44 is an integral transmembrane protein encoded by a single 20-exon gene. The diversity of the biological functions of CD44 is the result of the various splicing variants of these exons. Previous studies suggest that exon v10 of CD44 plays a key role in promoting cancer invasion and metastasis, however, the molecular mechanisms are not clear. Given the fact that exon v10 is in the ectodomain of CD44, we hypothesized that CD44 forms a molecular complex with other cell surface molecules through exon v10 in order to promote migration of breast cancer cells. In order to test this hypothesis, we selected DNA aptamers that specifically bound to CD44 exon v10 using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). We selected aptamers that inhibited migration of breast cancer cells. Co-immunoprecipitation studies demonstrated that EphA2 was co-precipitated with CD44. Pull-down studies demonstrated that recombinant CD44 exon v10 bound to EphA2 and more importantly aptamers that inhibited migration also prevented the binding of EphA2 to exon v10. These results suggest that CD44 forms a molecular complex with EphA2 on the breast cancer cell surface and this complex plays a key role in enhancing breast cancer migration. These results provide insight not only for characterizing mechanisms of breast cancer migration but also for developing target-specific therapy for breast cancers and possibly other cancer types expressing CD44 exon v10.


BMC Cell Biology | 2010

Connective Tissue Growth Factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion

Bethanie Morrison; Cynthia C Jose; Mary Lou Cutler

BackgroundConnective Tissue Growth Factor (CTGF/CCN2), a known matrix-associated protein, is required for the lactogenic differentiation of mouse mammary epithelial cells. An HC11 mammary epithelial cell line expressing CTGF/CCN2 was constructed to dissect the cellular responses to CTGF/CCN2 that contribute to this differentiation program.ResultsTetracycline-regulated expression of CTGF/CCN2 in HC11 cells enhanced multiple markers of lactogenic differentiation including β-casein transcription and mammosphere formation. In a separate measure of mammary differentiation the addition of CTGF/CCN2 to cultures of MCF10A cells increased the development of acini in vitro. In HC11 cells the elevated levels of CTGF/CCN2 diminished the requirement for extracellular matrix proteins in the activation of β-casein transcription, indicating that CTGF/CCN2 contributed to lactogenic differentiation through the regulation of matrix dependent cell adhesion. CTGF/CCN2 expression in HC11 cells increased expression of extracellular matrix proteins and integrins, enhanced the formation of focal adhesion complexes, and increased survival signaling. In addition, HC11 cells adhered to immobilized CTGF/CCN2 and this was inhibited by function-blocking antibodies to the integrins α6 and β1, and to a lesser degree by antibody to β3 integrin.ConclusionsCTGF/CCN2 expression in HC11 cells led to an increase in multiple markers of lactogenic differentiation. The mechanisms by which CTGF/CCN2 contributed to lactogenic differentiation include direct binding of CTGF/CCN2 to integrin complexes and CTGF/CCN2-induced matrix protein expression resulting in elevated integrin functionality.


Journal of Neuro-oncology | 2002

Identification of an alternatively spliced RNA for the Ras suppressor RSU-1 in human gliomas

Suryaprabha Chunduru; Hiroyuki Kawami; Richard Gullick; William J. Monacci; Gerard Dougherty; Mary Lou Cutler

Previous studies demonstrated that the Ras suppressor, RSU-1, localizes to human chromosome 10p13, a region frequently deleted in high grade gliomas, and that RSU-1 expression inhibited the tumorigenesis of a glioblastoma cell line. We have now examined RNA from human glial tumors for RSU-1 expression by RT-PCR using primers for the 5′ and 3′ ends of the RSU-1 open reading frame. Analysis of the amplified RSU-1 cDNA demonstrated that in addition to the entire 858 bp RSU-1 open reading frame, a shorter 725 bp RSU-1 fragment was amplified as well. Sequencing of this product revealed that it encoded a RSU-1 cDNA product which was missing a single 133 bp internal exon. This exon-deleted product was found in 30% of the high grade gliomas studied and 2/3 oligodendrogliomas, but not in other CNS tumors, bladder or colon tumors or normal tissue. The exon-deleted RSU-1 product was infrequently detected in RNA from human tumor cell lines. Expression of an HA-tagged form of the deleted RSU-1 protein in transfected Cos 1 cells revealed that the protein was unstable, with a half life of less than 1 h, in contrast to the full length HA-tagged Rsu-1 protein which was stable for more than 4 h. These results suggest that the alternative splicing of the RSU-1 RNA to produce the exon-deleted form constitutes a mechanism for reduction or loss of functional Rsu-1. Because the expression of Rsu-1 can inhibit malignant growth of glioblastoma cells, the depletion of Rsu-1, via the production of the alternatively spliced form of RSU-1, may inhibit growth regulation in tumors.


Journal of Cell Communication and Signaling | 2013

Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms

Reyda Gonzalez-Nieves; Akiko Iwahari DeSantis; Mary Lou Cutler

Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.

Collaboration


Dive into the Mary Lou Cutler's collaboration.

Top Co-Authors

Avatar

Craig D. Shriver

Walter Reed National Military Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joji Iida

Windber Research Institute

View shared research outputs
Top Co-Authors

Avatar

Bethanie Morrison

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Cynthia C Jose

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Reyda Gonzalez-Nieves

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jesse Dorchak

Windber Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria Grazia Cerrito

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Rebecca Clancy

Windber Research Institute

View shared research outputs
Top Co-Authors

Avatar

Traci Galbaugh

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Treasa Chopp

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge