Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary M. Allen is active.

Publication


Featured researches published by Mary M. Allen.


Archives of Microbiology | 1980

Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308

Mary M. Allen; Frann Hutchison

The effects of nitrogen limitation and recovery on nitrogen-containing macromolecules were followed in the cyanobacterium Aphanocapsa 6308. Removal of nitrogen from growth media triggers the degradation of the endogenous nitrogen reserves phycocyanin and cyanophycin granule polypeptide in the cyanobacterium Aphanocapsa 6308. Nitrogen recovery involves immediate synthesis of cyanophycin granule polypeptide with peak levels of 5–12% of cell dry weight found 8–12 h after a utilizable nitrogen source is added. A rapid decrease in cyanophycin granule polypeptide level then occurs and the level remains low even in light-limited stationary growth with all nitrogen sources tested except nitrate and ammonia. Protein and phycocyanin recoveries began 3 h after a utilizable nitrogen source was added. Data suggest continuous activity of the enzyme system synthesizing cyanophycin granule polypeptide in nitrogen-limited cells, but synthesis of a degrading system only after nitrogen recovery begins.


Archives of Microbiology | 1978

Arginine catabolism in Aphanocapsa 6308.

Pamela J. Weathers; Heng Leng Chee; Mary M. Allen

The catabolic products of arginine metabolism were observed in Aphanocapsa 6308, a unicellular cyanobacterium, by thin layer chromatography of growth media, by limiting growth conditions, and by enzymatic analysis. Of the organic, nitrogenous compounds examined, only arginine supported growth in CO2-free media. The excretion of ornithine at a concentration level greater than citrulline suggested the existence in Aphanocapsa 6308 of the arginine dihydrolase pathway which produced ornithine, CO2, NH4, + adenosine 5′-triphosphate. Its existence was confirmed by enzymatic analysis. Although cells could not grow on urea as a sole carbon source a very active urease and subsequently an arginase were also demonstrated, indicating that Aphanocapsa can metabolize arginine via the arginase pathway. The level of enzymes for both pathways indicates a lack of genetic control. It is suggested that the arginase pathway provides only nitrogen for the cells whereas the arginine dihydrolase pathway provides not only nitrogen, but also CO2 and adenosine 5′-triphosphate.


Archives of Microbiology | 1991

A comparison of the major lipid classes and fatty acid composition of marine unicellular cyanobacteria with freshwater species

Margaret V. Merritt; Sarah P. Rosenstein; Christine Loh Rachel; Hsui-sui Chou; Mary M. Allen

The fatty acid composition of two motile (strains WH 8113 and WH 8103) and one nonmotile (strain WH 7803) marine cyanobacteria has been determined and compared with two freshwater unicellular Synechocystis species (strain PCC 6308 and PCC 6803). The fatty acid composition of lipid extracts of isolated membranes from Synechocystis PCC 6803 was found to be identical to that of whole cells. All the marine strains contained myristic acid (14:0) as the major fatty acid, with only traces of polyunsaturated fatty acids. This composition is similar to Synechocystis PCC 6308. The major lipid classes of the nonmotile marine strain were identified as digalactosyl diacylglycerol, monogalactosyl diacylglycerol, phosphatidylglycerol, and sulfoquinovosyl diacylglycerol, identical to those found in other cyanobacteria.


Archives of Microbiology | 1976

Effect of some environmental factors on cyanophage AS-1 development in Anacystis nidulans

Mary M. Allen; Frann Hutchison

The development cycle of the cyanophage AS-1 was studied in the host blue-green alga, Anacystis nidulans, under conditions that impair photosynthesis and under various light/dark regimes. Under standard conditions of incubation the 16-h development cycle consisted of a 5-h eclipse period and an 8-h latent period. Burst size was decreased by dark incubation to 2% of that observed in the light. An inhibitor of photosystem II, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), reduced the burst size to 27% of that of the uninhibited control, whereas cyanophage production was completely abolished by carbonyl-cyanide m-chlorophenyl hydrazone (CCCP), an inhibitor of photosynthetic electron transport. Dark incubation of infected cells decreased the latent period by 1–2 h and the eclipse period by 1 h, once the cultures were illuminated. This suggests that adsorption took place in the dark. Intracellular growth curves indicated that light is necessary for viral development. Infected cells must be illuminated at least 13 h to produce a complete burst at the same rate as the continuously illuminated control. Low light intensities retarded the development cycle, and at lowest light intensities no phage yield was obtained. AS-1 is highly dependent on host cell photophosphorylation for its development.


Journal of Bacteriology | 2006

Effect of Nitrogen Source on Cyanophycin Synthesis in Synechocystis sp. Strain PCC 6308

Nancy H. Kolodny; Deborah Bauer; Kerstyn Bryce; Kristen Klucevsek; Amy Lane; Lea Medeiros; Wendy Mercer; Sogole Moin; Deborah Park; Juliette Petersen; Julie Wright; Courtney Yuen; Adele J. Wolfson; Mary M. Allen

Experiments were carried out to examine the effects of nitrogen source on nitrogen incorporation into cyanophycin during nitrogen limitation and repletion, both with or without inhibition of protein synthesis, in cyanobacteria grown on either nitrate or ammonium. The use of nitrate and ammonium, 14N labeled in the growth medium and 15N labeled in the repletion medium, allows the determination of the source of nitrogen in cyanophycin using proton nuclear magnetic resonance spectroscopy. The data suggest that nitrogen from both the breakdown of cellular protein (14N) and directly from the medium (15N) is incorporated into cyanophycin. Nitrogen is incorporated into cyanophycin at different rates and to different extents, depending on the source of nitrogen (ammonium or nitrate) and whether the cells are first starved for nitrogen. These differences appear to be related to the activity of nitrate reductase in cells and to the possible expression of cyanophycin synthetase during nitrogen starvation.


Archives of Microbiology | 1994

Variations in the amino acid composition of cyanophycin in the cyanobacterium Synechocystis sp. PCC 6308 as a function of growth conditions.

Margaret V. Merritt; Silvia S. Sid; Ludmila Mesh; Mary M. Allen

Gas chromatography-mass spectrometry studies of the nitrogen isotopic composition of the N-trifluoroacetyl n-butyl ester derivatives of the amino acids from isolated hydrolyzed cyanophycin from 15N-enriched cells led to two major findings: (1) the amino acid composition of this granular polypeptide, isolated using procedures optimized for extracting and purifying cyanophycin from cells in the stationary growth phase, varied with the culture growth condition; (2) the rate of incorporation of exogenous nitrate differed for each nitrogen atom of the amino acid constituents of cyanophycin or cyanophycin-like polypeptide. Arginine and aspartic acid were the principle components of cyanophycin isolated from exponentially growing cells and from light-limited stationary phase cells, with glutamic acid as an additional minor component. The cyanophycin-like polypeptide from nitrogen-limited cells contained only aspartic and glutamic acids, but no arginine. The glutamic acid content decreased and arginine content increased as nitrate was provided to nitrogen-limited cells. These cells rapidly incorporated nitrate at different rates at each cyanophycin nitrogen site: guanidino nitrogens of arginine>aspartic acid >α-amino nitrogen of arginine>glutamic acid. Little media-derived nitrogen was incorporated into cyanophycin of exponentially growing cells during one cellular doubling time.


Archives of Microbiology | 1990

Control of photosynthesis during nitrogen depletion and recovery in a non-nitrogen-fixing cyanobacterium

Mary M. Allen; Amy Law; E. Hilary Evans

When cells of Synechocystis strain PCC 6308 are starved for nitrogen, the amount of stored carbohydrate increases, the phycocyanin to chlorophyll a ratio decreases, and the rates of oxygen evolution and of carbon dioxide fixation decrease. When nitrate-nitrogen is replenished, the amount of carbohydrate decreases, the rate of oxygen evolution increases immediately, preceeding the increase in phycocyanin or carbon dioxide fixation. The rate of respiration first increases and then decreases upon nitrogen addition. Nitrogen-starved cells show no variable fluorescence; variable fluorescence recovered in parallel with oxygen evolution. This suggests that photosystem II is inactive in nitrogen depleted cells and not blocked by a build up of metabolic endproducts. Since carbon dioxide fixation does not increase until two to four hours after nitrate is replenished to nitrogen starved cells, it is suggested that reducing power may first be needed within the cell for some other process than photosynthesis, such as nitrate reduction.


Archives of Microbiology | 1978

Variations in Short Term Products of Inorganic Carbon Fixation in Exponential and Stationary Phase Cultures of Aphanocapsa 6308

Pamela J. Weathers; Mary M. Allen

Aphanocapsa 6308 metabolizes both NaHCO3 and Na2CO3. The short term incorporation (5-s) metabolic pattern and the patterns of incorporation of bicarbonate for exponential versus stationary phase cultures differ, however. Cells were equilibrated for 10 min in air and distilled water prior to injection of either NaH14CO3 at pH 8.0, or Na214CO3 at pH 11.0. Hot ethanol extracts were analyzed via paper chromatography and autoradiography for products of CO2 fixation. At 5 s, malate (51.5%) predominates slightly as a primary bicarbonate fixation product over 3-phosphoglycerate (40.3%); 3-phosphoglycerate is the primary product of carbonate fixation. At 60 s, the carbonate and bicarbonate labelling patterns are similar. Cells in stationary phase fix in 5 s a greater proportion of bicarbonate into malate (36% vs. 14% for 3-phosphoglycerate) than do cells in exponential growth. Likewise, 60 s incorporations show a large amount of bicarbonate fixed into aspartate (30.9%) in stationary phase cells over that of exponential phase (11.6%). These data suggest an operative C4 pathway for purposes not related to carbohydrate synthesis but rather as compensation for the incomplete tricarboxylic acid cycle in cyanobacteria. The enhancement of both aspartate fixation and CO2 fixation into citrulline in stationary phase correlates with an increase in cyanophycin granule production which requires both aspartate and arginine.


Biochimica et Biophysica Acta | 2001

A rapid and sensitive method for the analysis of cyanophycin

Nora A. Erickson; Nancy H. Kolodny; Mary M. Allen

A method has been devised for the quantitative analysis of cyanophycin, based on (1)H nuclear magnetic resonance (NMR) spectroscopy, allowing determination of the nitrogen status of cyanobacteria. Cyanophycin is extracted with minimal washing from small volumes of cells and quantified by integration of the NMR peak attributed to the protons attached to the delta-carbon of arginine. Linear relationships were found between the amount of cyanophycin determined by this method and both known concentrations of cyanophycin solutions and the amount of cyanophycin determined using the standard chemical arginine assay.


Archives of Microbiology | 1972

Mesosomes in Blue-Green Algae

Mary M. Allen

SummaryMesosome-like, unit-membrane structures are clearly defined in the blue-green algae, Spirulina and three strains of Synechococcus, after osmium or potassium permanganate fixation and observation with the electron microscope. The membranous structures are distinct from the photosynthetic membranes and, in the case of Spirulina, are frequently observed in cells and can occur in large volume within the cell.

Collaboration


Dive into the Mary M. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge