Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary M. Lunzer is active.

Publication


Featured researches published by Mary M. Lunzer.


Vascular Medicine | 2001

The Minnesota Regional Peripheral Arterial Disease Screening Program: toward a definition of community standards of care.

Alan T. Hirsch; Sheri L. Halverson; Diane Treat-Jacobson; Peter S Hotvedt; Mary M. Lunzer; Susan Krook; Scott Rajala; Donald B. Hunninghake

The Minnesota Regional Peripheral Arterial Disease Screening Program was designed to define the efficacy of community PAD detection efforts, to assess the disease-specific and health-related morbidity, to assess PAD awareness rates, and to determine the magnitude of atherosclerosis disease risk factors and the intensity of their management. The target population was recruited via mass media efforts directed at individuals over 50 years of age and those with leg pain with ambulation. Screening sessions included assessments of the ankle-brachial index, blood pressure, fasting lipid profile, and use of validated tools to detect symptomatic claudication (by the Modified WHO-Edinburgh Claudication Questionnaire), walking impairment (Walking Impairment Questionnaire -WIQ), quality of life (MOS SF-36), PAD awareness, and the intensity of PAD medical therapeutic interventions. PAD was defined as any ankle-brachial index ≤0.85 or a history of lower extremity revascularization. The program evaluated 347 individuals and identified 92 subjects with PAD and 255 subjects without PAD, yielding a detection rate of 26.5%. Individuals with PAD were older, tended to have higher blood pressures, and had a significant walking impairment and an impaired health-related quality of life compared with the non-PAD subjects. Current rates of tobacco use were low. Lipid-lowering, estrogen replacement, anti-platelet, and antihypertensive medications and exercise therapies were underutilized in the PAD cohort. Peripheral arterial disease awareness was low in these community-identified patients. This Program demonstrated that individuals with PAD can be efficiently identified within the community, but that current standards of medical care are low. These data can assist in the future development of PAD awareness, education, and treatment programs.


Hypertension | 1997

Effect of Bilateral Nephrectomy on Active Renin, Angiotensinogen, and Renin Glycoforms in Plasma and Myocardium

Stephen A. Katz; John A. Opsahl; Mary M. Lunzer; Lynn M. Forbis; Alan T. Hirsch

In an attempt to clarify the relationship of the circulating and myocardial renin-angiotensin systems, active renin concentration, its constituent major glycoforms (active renin glycoforms I through V), and angiotensinogen were measured in plasma and left ventricular homogenates from sodium-depleted rats under control conditions or 2 minutes, 3 hours, 6 hours, and 48 hours after bilateral nephrectomy (BNX). Control myocardial renin concentration was 1.4+/-0.1 ng angiotensin I (Ang I) per gram myocardium per hour and plasma renin concentration was 6.7+/-1.1 ng Ang I per milliliter plasma per hour. Control myocardial angiotensinogen was 0.042+/-0.004 micromol/kg myocardium and plasma angiotensinogen was 1.5 micromol/L plasma. Two minutes after BNX and corresponding stimulation of renin secretion by anesthesia and surgery, plasma renin concentration was increased disproportionately compared with myocardial renin. Three, 6, and 48 hours after BNX, renin decay occurred significantly faster from the plasma than from the myocardium. Forty-eight hours after BNX, myocardial renin concentrations had fallen to 15% of control values, while myocardial angiotensinogen concentrations had increased 12-fold and plasma angiotensinogen concentrations had increased by only 3.5-fold. Myocardial renin glycoform proportions were identical in myocardial homogenates and plasma in control animals. At 6 hours BNX, the proportions of plasma active renin glycoforms I+II fell, while those in the myocardium significantly increased. We conclude that in control rats, active renin and active renin glycoforms are distributed as if in diffusion equilibrium between plasma and the myocardial interstitial space. After BNX, myocardial renin concentration falls dramatically, suggesting that most cardiac renin is derived from plasma renin of renal origin. After BNX, renin glycoforms I+II are preferentially cleared from the plasma but preferentially retained by the myocardium. Control myocardial angiotensinogen concentrations are too low to result from simple diffusion equilibrium between plasma and the myocardial interstitium.


Journal of Medicinal Chemistry | 2013

Bivalent Ligands That Target μ Opioid (MOP) and Cannabinoid1 (CB1) Receptors Are Potent Analgesics Devoid of Tolerance

Morgan Le Naour; Eyup Akgün; Ajay S. Yekkirala; Mary M. Lunzer; Mike D. Powers; Alexander E. Kalyuzhny; Philip S. Portoghese

Given that μ opioid (MOP) and canabinoid (CB1) receptors are colocalized in various regions of the central nervous system and have been reported to associate as heteromer (MOP-CB1) in cultured cells, the possibility of functional, endogenous MOP-CB1 in nociception and other pharmacologic effects has been raised. As a first step in investigating this possibility, we have synthesized a series of bivalent ligands 1-5 that contain both μ agonist and CB1 antagonist pharmacophores for use as tools to study the functional interaction between MOP and CB1 receptors in vivo. Immunofluorescent studies on HEK293 cells coexpressing both receptors suggested 5 (20-atom spacer) to be the only member of the series that bridges the protomers of the heteromer. Antinociceptive testing in mice revealed 5 to be the most potent member of the series. As neither a mixture of monovalent ligands 9 + 10 nor bivalents 2-5 produced tolerance in mice, MOR-CB1 apparently is not an important target for reducing tolerance.


Proceedings of the National Academy of Sciences of the United States of America | 2011

N-naphthoyl-β-naltrexamine (NNTA), a highly selective and potent activator of μ/κ-opioid heteromers

Ajay S. Yekkirala; Mary M. Lunzer; Christopher R. McCurdy; Michael D. Powers; Alexander E. Kalyuzhny; Sandra C. Roerig; Philip S. Portoghese

Numerous G protein-coupled receptors (GPCRs) have been shown to form heteromeric receptors in cell-based assays. Among the many heteromers reported in the opioid receptor family are μ/κ, κ/δ, and μ/δ. However, the in vivo physiological and behavioral relevance for the proposed heteromers have not yet been established. Here we report a unique example of a ligand, N-naphthoyl-β-naltrexamine (NNTA) that selectively activates heteromeric μ/κ-opioid receptors in HEK-293 cells and induces potent antinociception in mice. NNTA was an exceptionally potent agonist in cells expressing μ/κ-opioid receptors. Intriguingly, it was found to be a potent antagonist in cells expressing only μ-receptors. In the mouse tail-flick assay, intrathecal (i.t.) NNTA produced antinociception that was ~100-fold greater than by intracerebroventricular (i.c.v.) administration. The κ-antagonist, norBNI, decreased the i.t. potency, and the activity was virtually abolished in μ-opioid receptor knockout mice. No tolerance was induced i.t., but marginal tolerance (3-fold) was observed via the i.c.v. route. Moreover, NNTA produced neither significant physical dependence nor place preference in the ED50 dose range. Taken together, this work provides an important pharmacologic tool for investigating the in vivo functional relevance of heteromeric μ/κ-opioid receptors and suggests an approach to potent analgesics with fewer deleterious side effects.


European Journal of Pharmacology | 2003

Identity of the putative δ1-opioid receptor as a δ–κ heteromer in the mouse spinal cord

Philip S. Portoghese; Mary M. Lunzer

In view of the co-localization of spinal delta- and kappa-opioid receptors, we have investigated the interaction of selective opioid receptor agonists and antagonists in the spinal cord of mice in order to determine if these receptors are organized as heteromers. The finding that norbinaltorphimine (kappa) antagonized [D-Pen(2,5)]enkephalin (delta(1)), but not deltorphin II (delta(2)), strongly suggests that the putative delta(1)-subtype is a delta-kappa heteromer. Studies with selective opioid receptor (ant)agonists support this conclusion.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Ligands that interact with putative MOR-mGluR5 heteromer in mice with inflammatory pain produce potent antinociception

Eyup Akgün; Muhammad I. Javed; Mary M. Lunzer; Branden A. Smeester; A.J. Beitz; Philip S. Portoghese

The low effectiveness of morphine and related mu opioid analgesics for the treatment of chronic inflammatory pain is a result of opioid-induced release of proinflammatory cytokines and glutamate that lower the pain threshold. In this regard, the use of opioids with metabotropic glutamate-5 receptor (mGluR5) antagonist has been reported to increase the efficacy of morphine and prevent the establishment of adverse effects during chronic use. Given the presence of opioid receptors (MORs) and mGluR5 in glia and neurons, together with reports that suggest coexpressed MOR/mGluR5 receptors in cultured cells associate as a heteromer, the possibility that such a heteromer could be a target in vivo was addressed by the design and synthesis of a series of bivalent ligands that contain mu opioid agonist and mGluR5 antagonist pharmacophores linked through spacers of varying length (10–24 atoms). The series was evaluated for antinociception using the tail-flick and von Frey assays in mice pretreated with lipopolysaccharide (LPS) or in mice with bone cancer. In LPS-pretreated mice, MMG22 (4c, 22-atom spacer) was the most potent member of the series (intrathecal ED50 ∼9 fmol per mouse), whereas in untreated mice its ED50 was more than three orders of magnitude higher. As members of the series with shorter or longer spacers have ≥500-fold higher ED50s in LPS-treated mice, the exceptional potency of MMG22 may be a result of the optimal bridging of protomers in a putative MOR-mGluR5 heteromer. The finding that MMG22 possesses a >106 therapeutic ratio suggests that it may be an excellent candidate for treatment of chronic, intractable pain via spinal administration.


Journal of Medicinal Chemistry | 2009

Induced association of mu opioid (MOP) and type 2 cholecystokinin (CCK2) receptors by novel bivalent ligands

Yaguo Zheng; Eyup Akgün; Kaleeckal G. Harikumar; Jessika Hopson; Michael D. Powers; Mary M. Lunzer; Laurence J. Miller; Philip S. Portoghese

Both mu-opioid (MOP) and type 2 cholecystokinin (CCK2) receptors are present in areas of the central nervous system that are involved in modulation of pain processing. We conducted bioluminescence resonance energy transfer (BRET) studies on COS cells coexpressing MOP and CCK2 receptors to determine whether receptor heterodimerization is involved in such modulation. These studies revealed the absence of constitutive or monovalent ligand-induced heterodimerization. Heterodimerization of MOP and CCK2 receptors therefore is unlikely to be responsible for the opposing effects between morphine and CCK in the CNS. However, association was induced, as indicated by a positive BRET signal, on exposure of the cells to bivalent ligands containing mu-opioid agonist and CCK2 receptor antagonist pharmacophores linked through spacers containing 16-22 atoms but not with a shorter (9-atom) spacer. These studies demonstrate for the first time that an appropriately designed bivalent ligand is capable of inducing association of G-protein-coupled receptors. The finding that opioid tolerance studies with these ligands in mice showed no correlation with the BRET data is consistent with the absence of association of MOP and CCK2 receptors in vivo.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Active renin and angiotensinogen in cardiac interstitial fluid after myocardial infarction

Alan T. Hirsch; John A. Opsahl; Mary M. Lunzer; Stephen A. Katz

The renin-angiotensin system promotes cardiac hypertrophy after myocardial infarction. The purpose of this study was to measure renin and angiotensinogen in plasma and myocardium 10 days after myocardial infarction. Infarction involving 45 +/- 4% of left ventricular circumference with accompanying hypertrophy was induced in rats (n = 14). Plasma and myocardial renin were increased after infarction compared with sham controls (n = 8) (27.4 +/- 3.2 vs. 7.5 +/- 1.8 ng ANG I. ml plasma. h-1, P < 0.0002; and 8.8 +/- 1.6 vs. 2. 5 +/- 0.1 ng ANG I. g myocardium-1. h-1, P < 0.008, respectively). After infarction, myocardial renin was correlated with infarct size (r = 0.62, P < 0.02) and plasma renin (r = 0.55, P < 0.04). Plasma angiotensinogen decreased in infarct animals, but myocardial angiotensinogen was not different from shams (1.1 +/- 0.08 vs. 2.03 +/- 0.06 nM/ml plasma, P < 0.002; and 0.081 +/- 0.008 vs. 0.070 +/- 0.004 nM/g myocardium, respectively). In conclusion, myocardial renin increased after infarction in proportion to plasma renin and infarct size, and myocardial angiotensinogen was maintained after infarction despite decreased plasma angiotensinogen and increased levels of myocardial renin.The renin-angiotensin system promotes cardiac hypertrophy after myocardial infarction. The purpose of this study was to measure renin and angiotensinogen in plasma and myocardium 10 days after myocardial infarction. Infarction involving 45 ± 4% of left ventricular circumference with accompanying hypertrophy was induced in rats ( n = 14). Plasma and myocardial renin were increased after infarction compared with sham controls ( n = 8) (27.4 ± 3.2 vs. 7.5 ± 1.8 ng ANG I ⋅ ml plasma ⋅ h-1, P < 0.0002; and 8.8 ± 1.6 vs. 2.5 ± 0.1 ng ANG I ⋅ g myocardium-1 ⋅ h-1, P < 0.008, respectively). After infarction, myocardial renin was correlated with infarct size ( r = 0.62, P < 0.02) and plasma renin ( r = 0.55, P < 0.04). Plasma angiotensinogen decreased in infarct animals, but myocardial angiotensinogen was not different from shams (1.1 ± 0.08 vs. 2.03 ± 0.06 nM/ml plasma, P < 0.002; and 0.081 ± 0.008 vs. 0.070 ± 0.004 nM/g myocardium, respectively). In conclusion, myocardial renin increased after infarction in proportion to plasma renin and infarct size, and myocardial angiotensinogen was maintained after infarction despite decreased plasma angiotensinogen and increased levels of myocardial renin.


European Journal of Pharmacology | 2014

Targeting putative mu opioid/metabotropic glutamate receptor-5 heteromers produces potent antinociception in a chronic murine bone cancer model.

Branden A. Smeester; Mary M. Lunzer; Eyup Akgün; Alvin J. Beitz; Philip S. Portoghese

The therapeutic management of chronic pain associated with many cancers is problematic due to the development of tolerance and other adverse effects during the disease progression. Recently we reported on a bivalent ligand (MMG22) containing both mu agonist and mGluR5 antagonist pharmacophores that produced potent antinociception in mice with LPS-induced acute inflammatory pain via a putative MOR-mGluR5 heteromer. In the present study we have investigated the antinociception of MMG22 in a mouse model of bone cancer pain to determine its effectiveness in reducing this type of chronic nociception. There was a 572-fold increase in the potency of MMG22 over a period of 3-21 days that correlated with the progressive increase in hyperalgesia induced by bone tumor growth following implantation of fibrosarcoma cells in mice. The enhancement of antinociception with the progression of the cancer is possibly due to inhibition of NMDA receptor-mediated hyperalgesia via antagonism of mGluR5 and concomitant activation of MOR by the MMG22-occupied heteromer. Notably, MMG22 was 3.6-million-fold more potent than morphine at PID 21. Since MMG22 exhibited a 250,000-times greater potency than that of a mixture of the mu opioid (M19) agonist and mGluR5 antagonist (MG20) monovalent ligands, the data suggest that targeting the putative MOR-mGluR5 heteromer is far superior to univalent interaction with receptors in reducing tumor-induced nociception. In view of the high potency, long duration (>24h) of action and minimal side effects, MMG22 has the potential to be a superior pharmacological agent than morphine and other opiates in the treatment of chronic cancer pain and to serve as a novel pharmacologic tool.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Naloxone acts as a potent analgesic in transgenic mouse models of sickle cell anemia

Mary M. Lunzer; Ajay S. Yekkirala; Robert P. Hebbel; Philip S. Portoghese

Sickle cell anemia is a common genetic disorder in African Americans. Opioid analgesics are traditionally the treatment for the severe pain associated with this disease. Here we reveal that the opioid antagonist naloxone possesses potent analgesic activity in two transgenic mouse models of sickle cell anemia (NY1DD and hBERK1) and not in their respective controls (ICR-CD1 and C57BL/6J) when administered by three parenteral routes [intracerebroventricular (i.c.v.), intrathecal, and subcutaneous]. In the NY1DD mice, naloxone (i.c.v.) possessed ≈300-fold greater potency than morphine (i.c.v.). Other opioid antagonists (naltrexone, norbinaltorphimine, and naltrindole) were substantially less effective in producing analgesia. Naloxone and morphine were synergistic in NY1DD mice, suggesting different receptor systems. Microarray analysis suggested naloxone-induced down-regulation of the CC chemokine receptor (CCR)5 in NY1DD mice but not in control mice. Pretreatment of control mice with CC chemokine ligand 5 [CCL5 (RANTES)] enabled naloxone to produce analgesia similar to that observed in NY1DD mice. Mu opioid receptor knockout mice treated similarly also displayed analgesia. That the effect of CCL5 was specifically related to CCR5 and/or CCR1 activation was demonstrated by antagonism of analgesia with the chemokine antagonist methionylated RANTES. Similar antagonism of naloxone-induced analgesia also was observed when NY1DD mice were pretreated with methionylated RANTES. These results indicate that CCR5/CCR1 receptors are directly or indirectly involved in analgesia produced by naloxone. The present study suggests that naloxone may be clinically useful in the treatment of pain associated with sickle cell disease and other disorders involving inflammation.

Collaboration


Dive into the Mary M. Lunzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eyup Akgün

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge