Mary M. Maleckar
Simula Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary M. Maleckar.
Philosophical Transactions of the Royal Society A | 2011
Steven Niederer; Eric Kerfoot; Alan P. Benson; Miguel O. Bernabeu; Olivier Bernus; Chris P. Bradley; Elizabeth M. Cherry; Richard H. Clayton; Flavio H. Fenton; Alan Garny; Elvio Heidenreich; Sander Land; Mary M. Maleckar; Pras Pathmanathan; Gernot Plank; Jose Rodriguez; Ishani Roy; Frank B. Sachse; Gunnar Seemann; Ola Skavhaug; Nicolas Smith
Ongoing developments in cardiac modelling have resulted, in particular, in the development of advanced and increasingly complex computational frameworks for simulating cardiac tissue electrophysiology. The goal of these simulations is often to represent the detailed physiology and pathologies of the heart using codes that exploit the computational potential of high-performance computing architectures. These developments have rapidly progressed the simulation capacity of cardiac virtual physiological human style models; however, they have also made it increasingly challenging to verify that a given code provides a faithful representation of the purported governing equations and corresponding solution techniques. This study provides the first cardiac tissue electrophysiology simulation benchmark to allow these codes to be verified. The benchmark was successfully evaluated on 11 simulation platforms to generate a consensus gold-standard converged solution. The benchmark definition in combination with the gold-standard solution can now be used to verify new simulation codes and numerical methods in the future.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Mary M. Maleckar; Joseph L. Greenstein; Wayne R. Giles; Natalia A. Trayanova
Ongoing investigation of the electrophysiology and pathophysiology of the human atria requires an accurate representation of the membrane dynamics of the human atrial myocyte. However, existing models of the human atrial myocyte action potential do not accurately reproduce experimental observations with respect to the kinetics of key repolarizing currents or rate dependence of the action potential and fail to properly enforce charge conservation, an essential characteristic in any model of the cardiac membrane. In addition, recent advances in experimental methods have resulted in new data regarding the kinetics of repolarizing currents in the human atria. The goal of this study was to develop a new model of the human atrial action potential, based on the Nygren et al. model of the human atrial myocyte and newly available experimental data, that ensures an accurate representation of repolarization processes and reproduction of action potential rate dependence and enforces charge conservation. Specifically, the transient outward K(+) current (I(t)) and ultrarapid rectifier K(+) current (I(Kur)) were newly formulated. The inwardly recitifying K(+) current (I(K1)) was also reanalyzed and implemented appropriately. Simulations of the human atrial myocyte action potential with this new model demonstrated that early repolarization is dependent on the relative conductances of I(t) and I(Kur), whereas densities of both I(Kur) and I(K1) underlie later repolarization. In addition, this model reproduces experimental measurements of rate dependence of I(t), I(Kur), and action potential duration. This new model constitutes an improved representation of excitability and repolarization reserve in the human atrial myocyte and, therefore, provides a useful computational tool for future studies involving the human atrium in both health and disease.
Biophysical Journal | 2009
Mary M. Maleckar; Joseph L. Greenstein; Wayne R. Giles; Natalia A. Trayanova
Atrial fibrosis has been implicated in the development and maintenance of atrial arrhythmias, and is characterized by expansion of the extracellular matrix and an increased number of fibroblasts (Fbs). Electrotonic coupling between atrial myocytes and Fbs may contribute to the formation of an arrhythmogenic substrate. However, the role of these cell-cell interactions in the function of both normal and diseased atria remains poorly understood. The goal of this study was to gain mechanistic insight into the role of electrotonic Fb-myocyte coupling on myocyte excitability and repolarization. To represent the system, a human atrial myocyte (hAM) coupled to a variable number of Fbs, we employed a new ionic model of the hAM, and a variety of membrane representations for atrial Fbs. Simulations elucidated the effects of altering the intercellular coupling conductance, electrophysiological Fb properties, and stimulation rate on the myocyte action potential. The results demonstrate that the myocyte resting potential and action potential waveform are modulated strongly by the properties and number of coupled Fbs, the degree of coupling, and the pacing frequency. Our model provides mechanistic insight into the consequences of heterologous cell coupling on hAM electrophysiology, and can be extended to evaluate these implications at both tissue and organ levels.
Biophysical Journal | 2011
Kathleen S. McDowell; Hermenegild Arevalo; Mary M. Maleckar; Natalia A. Trayanova
Fibroblasts are electrophysiologically quiescent in the healthy heart. Evidence suggests that remodeling following myocardial infarction may include coupling of myofibroblasts (Mfbs) among themselves and with myocytes via gap junctions. We use a magnetic resonance imaging-based, three-dimensional computational model of the chronically infarcted rabbit ventricles to characterize the arrhythmogenic substrate resulting from Mfb infiltration as a function of Mfb density. Mfbs forming gap junctions were incorporated into both infarct regions, the periinfarct zone (PZ) and the scar; six scenarios were modeled: 0%, 10%, and 30% Mfbs in the PZ, with either 80% or 0% Mfbs in the scar. Ionic current remodeling in PZ was also included. All preparations exhibited elevated resting membrane potential within and near the PZ and action potential duration shortening throughout the ventricles. The unique combination of PZ ionic current remodeling and different degrees of Mfb infiltration in the infarcted ventricles determines susceptibility to arrhythmia. At low densities, Mfbs do not alter arrhythmia propensity; the latter arises predominantly from ionic current remodeling in PZ. At intermediate densities, Mfbs cause additional action potential shortening and exacerbate arrhythmia propensity. At high densities, Mfbs protect against arrhythmia by causing resting depolarization and blocking propagation, thus overcoming the arrhythmogenic effects of PZ ionic current remodeling.
Progress in Biophysics & Molecular Biology | 2008
Mary M. Maleckar; Joseph L. Greenstein; Natalia A. Trayanova; Wayne R. Giles
In the mammalian heart, myocytes and fibroblasts can communicate via gap junction, or connexin-mediated current flow. Some of the effects of this electrotonic coupling on the action potential waveform of the human ventricular myocyte have been analyzed in detail. The present study employs a recently developed mathematical model of the human atrial myocyte to investigate the consequences of this heterogeneous cell-cell interaction on the action potential of the human atrium. Two independent physiological processes which alter the physiology of the human atrium have been studied. i) The effects of the autonomic transmitter acetylcholine on the atrial action potential have been investigated by inclusion of a time-independent, acetylcholine-activated K(+) current in this mathematical model of the atrial myocyte. ii) A non-selective cation current which is activated by natriuretic peptides has been incorporated into a previously published mathematical model of the cardiac fibroblast. These results identify subtle effects of acetylcholine, which arise from the nonlinear interactions between ionic currents in the human atrial myocyte. They also illustrate marked alterations in the action potential waveform arising from fibroblast-myocyte source-sink principles when the natriuretic peptide-mediated cation conductance is activated. Additional calculations also illustrate the effects of simultaneous activation of both of these cell-type specific conductances within the atrial myocardium. This study provides a basis for beginning to assess the utility of mathematical modeling in understanding detailed cell-cell interactions within the complex paracrine environment of the human atrial myocardium.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Mary M. Maleckar; Marcella C. Woods; Veniamin Y. Sidorov; Mark R. Holcomb; David N. Mashburn; John P. Wikswo; Natalia A. Trayanova
To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.
PLOS Computational Biology | 2014
Jussi T. Koivumäki; Gunnar Seemann; Mary M. Maleckar; Pasi Tavi
Chronic atrial fibrillation (AF) is a complex disease with underlying changes in electrophysiology, calcium signaling and the structure of atrial myocytes. How these individual remodeling targets and their emergent interactions contribute to cell physiology in chronic AF is not well understood. To approach this problem, we performed in silico experiments in a computational model of the human atrial myocyte. The remodeled function of cellular components was based on a broad literature review of in vitro findings in chronic AF, and these were integrated into the model to define a cohort of virtual cells. Simulation results indicate that while the altered function of calcium and potassium ion channels alone causes a pronounced decrease in action potential duration, remodeling of intracellular calcium handling also has a substantial impact on the chronic AF phenotype. We additionally found that the reduction in amplitude of the calcium transient in chronic AF as compared to normal sinus rhythm is primarily due to the remodeling of calcium channel function, calcium handling and cellular geometry. Finally, we found that decreased electrical resistance of the membrane together with remodeled calcium handling synergistically decreased cellular excitability and the subsequent inducibility of repolarization abnormalities in the human atrial myocyte in chronic AF. We conclude that the presented results highlight the complexity of both intrinsic cellular interactions and emergent properties of human atrial myocytes in chronic AF. Therefore, reversing remodeling for a single remodeled component does little to restore the normal sinus rhythm phenotype. These findings may have important implications for developing novel therapeutic approaches for chronic AF.
Annals of the New York Academy of Sciences | 2006
Viatcheslav Gurev; Mary M. Maleckar; Natalia A. Trayanova
Abstract: Ventricular dilatation increases the defibrillation threshold (DFT). In order to elucidate the mechanisms responsible for this increase, the present article investigates changes in the postshock behavior of the myocardium upon stretch. A two‐dimensional electro‐mechanical model of cardiac tissue incorporating heterogeneous fiber orientation was used to explore the effect of sustained stretch on postshock behavior via (a) recruitment of mechanosensitive channels (MSC) and (b) tissue deformation and concomitant changes in tissue conductivities. Recruitment of MSC had no influence on vulnerability to electric shocks as compared to control, but increased the complexity of postshock VF patterns. Stretch‐induced deformation and changes in tissue conductivities resulted in a decrease in vulnerability to electric shocks.
Pharmacology & Therapeutics | 2016
Eleonora Grandi; Mary M. Maleckar
Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with increased risk of cerebrovascular stroke, and with several other pathologies, including heart failure. Current therapies for AF are targeted at reducing risk of stroke (anticoagulation) and tachycardia-induced cardiomyopathy (rate or rhythm control). Rate control, typically achieved by atrioventricular nodal blocking drugs, is often insufficient to alleviate symptoms. Rhythm control approaches include antiarrhythmic drugs, electrical cardioversion, and ablation strategies. Here, we offer several examples of how computational modeling can provide a quantitative framework for integrating multiscale data to: (a) gain insight into multiscale mechanisms of AF; (b) identify and test pharmacological and electrical therapy and interventions; and (c) support clinical decisions. We review how modeling approaches have evolved and contributed to the research pipeline and preclinical development and discuss future directions and challenges in the field.
Circulation | 2012
Robert A. Rose; Darrell D. Belke; Mary M. Maleckar; Wayne R. Giles
In this issue of Circulation , Harada et al1 provide fundamental new insights into the cellular mechanism(s) for initiation and maintenance of chronic atrial fibrillation in the human heart. The authors, taking what most might still consider to be an unconventional approach to understanding this proarrhythmic substrate,2,3,4 have identified the atrial fibroblast as an important player. More specifically, this international group of investigators concludes that a particular member of the transient receptor potential or TRP family5 of ion channels, TRPC3, when expressed/upregulated in human atrial fibroblasts, can contribute to chronic atrial fibrillation. Activation or enhanced expression of TRPC3 provides a means for increased transmembrane calcium entry into the fibroblast. This trigger calcium can then result in a marked increase in proliferation, followed by transformation to the myofibroblast phenotype.6,7 A previous study had drawn attention to the possibility that a different TRP channel subtype, TRPM7, could play a somewhat similar proarrhythmic role in the atrium.7,8 Article see p 2051 Atrial fibrillation is the most common form of cardiac arrhythmia in adult humans.9 Importantly, its incidence is projected to increase substantially as a consequence of the association of atrial fibrillation with healthy aging,10 diabetes mellitus, and hypothyroidism. Harada et al1 provide the first evidence for the presence of TRPC3 current during the proliferative phase in cultured human atrial fibroblasts. Knockdown of TRPC3 is able to suppress atrial fibroblast proliferation, and similar results were obtained with the pharmacological inhibitor PYR3, a relatively new pyrazole-based compound. This particular TRP channel exhibits significant calcium permeability. This calcium influx contributes to ERK phosphorylation, which is involved in mediating atrial fibroblast proliferation. A very interesting observation …