Mary M. Vaughan
Roswell Park Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary M. Vaughan.
BMC Women's Health | 2005
Brenda Lauffart; Mary M. Vaughan; Roger L. Eddy; David S. Chervinsky; Richard A. DiCioccio; Jennifer D. Black; Ivan H. Still
BackgroundDysregulation of the human Transforming Acidic Coiled Coil (TACC) genes is thought to be important in the development and progression of multiple myeloma, breast and gastric cancer. Recent, large-scale genomic analysis and Serial Analysis of Gene Expression data suggest that TACC1 and TACC3 may also be involved in the etiology of ovarian tumors from both familial and sporadic cases. Therefore, the aim of this study was to determine the occurrence of alterations of these TACCs in ovarian cancer.MethodsDetection and scoring of TACC1 and TACC3 expression was performed by immunohistochemical analysis of the T-BO-1 tissue/tumor microarray slide from the Cooperative Human Tissue Network, Tissue Array Research Program (TARP) of the National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. Tumors were categorized as either positive (greater than 10% of cells staining) or negative. Statistical analysis was performed using Fishers exact test and p < 0.05 (single comparisons), and p < 0.02 (multiple comparisons) were considered to be significant. Transgenomics WAVE high performance liquid chromatography (dHPLC) was used to pre-screen the TACC3 gene in constitutional DNA from ovarian cancer patients and their unaffected relatives from 76 families from the Gilda Radner Familial Ovarian Cancer Registry. All variant patterns were then sequenced.ResultsThis study demonstrated absence of at least one or both TACC proteins in 78.5% (51/65) of ovarian tumors tested, with TACC3 loss observed in 67.7% of tumors. The distribution pattern of expression of the two TACC proteins was different, with TACC3 loss being more common in serous papillary carcinoma compared with clear cell carcinomas, while TACC1 staining was less frequent in endometroid than in serous papillary tumor cores. In addition, we identified two constitutional mutations in the TACC3 gene in patients with ovarian cancer from the Gilda Radner Familial Ovarian Cancer Registry. These patients had previously tested negative for mutations in known ovarian cancer predisposing genes.ConclusionWhen combined, our data suggest that aberrations of TACC genes, and TACC3 in particular, underlie a significant proportion of ovarian cancers. Thus, TACC3 could be a hitherto unknown endogenous factor that contributes to ovarian tumorigenesis.
Cancer Research | 2006
Bing Su; Qiao Zheng; Mary M. Vaughan; Yahao Bu; Irwin H. Gelman
SSeCKS, a Src-suppressed protein kinase C substrate with metastasis suppressor activity, is the rodent orthologue of human gravin/AKAP12, a scaffolding protein for protein kinase A and protein kinase C. We show here that the tetracycline-regulated reexpression of SSeCKS in MatLyLu (MLL) prostate cancer cells suppressed formation of macroscopic lung metastases in both spontaneous and experimental models of in vivo metastasis while having minimal inhibitory effects on the growth of primary-site s.c. tumors. SSeCKS decreased angiogenesis in vitro and in vivo by suppressing vascular endothelial growth factor (VEGF) expression in MLL tumor cells as well as in stromal cells. The forced reexpression of VEGF(165) and VEGF(121) isoforms was sufficient to reverse aspects of SSeCKS metastasis-suppressor activity in both the experimental and spontaneous models. SSeCKS reexpression in MLL cells resulted in the down-regulation of proangiogenic genes, such as osteopontin, tenascin C, KGF, angiopoietin, HIF-1alpha, and PDGFRbeta, and the up-regulation of antiangiogenic genes, such as vasostatin and collagen 18a1, a precursor of endostatin. These results suggest that SSeCKS suppresses formation of metastatic lesions by inhibiting VEGF expression and by inducing soluble antiangiogenic factors.
Clinical Cancer Research | 2008
Arup Bhattacharya; Mukund Seshadri; Steven D. Oven; Karoly Toth; Mary M. Vaughan; Youcef M. Rustum
Purpose: Our previously reported therapeutic synergy between naturally occurring seleno-amino acid methylselenocysteine (MSC) and anticancer drugs could not be shown in vitro. Studies were carried out to investigate the potential role of MSC-induced tumor vascular maturation and increased drug delivery in the observed therapeutic synergy in vivo. Experimental Design: Mice bearing s.c. FaDu human head and neck squamous cell carcinoma xenografts were treated with MSC (0.2 mg/d × 14 days orally). Changes in microvessel density (CD31), vascular maturation (CD31/α-smooth muscle actin), perfusion (Hoechst 33342/DiOC7), and permeability (dynamic contrast-enhanced magnetic resonance imaging) were determined at the end of the 14-day treatment period. Additionally, the effect of MSC on drug delivery was investigated by determining intratumoral concentration of doxorubicin using high-performance liquid chromatography and fluorescence microscopy. Results: Double immunostaining of tumor sections revealed a marked reduction (∼40%) in microvessel density accompanying tumor growth inhibition following MSC treatment along with a concomitant increase in the vascular maturation index (∼30% > control) indicative of increased pericyte coverage of microvessels. Hoechst 33342/DiOC7 staining showed improved vessel functionality, and dynamic contrast-enhanced magnetic resonance imaging using the intravascular contrast agent, albumin-GdDTPA, revealed a significant reduction in vascular permeability following MSC treatment. Consistent with these observations, a 4-fold increase in intratumoral doxorubicin levels was observed with MSC pretreatment compared with administration of doxorubicin alone. Conclusion: These results show, for the first time, the antiangiogenic effects of MSC results in tumor growth inhibition, vascular maturation in vivo, and enhanced anticancer drug delivery that are associated with the observed therapeutic synergy in vivo.
Cancer Chemotherapy and Pharmacology | 2010
Sreenivasulu Chintala; Karoly Toth; Shousong Cao; Farukh A. Durrani; Mary M. Vaughan; Randy L. Jensen; Youcef M. Rustum
PurposeHypoxic tumor cells overexpressing hypoxia-inducible factor 1alpha (HIF-1α) are generally resistant to chemo/radiotherapy. We have reported that Se-methylselenocysteine (MSC) therapeutically enhances the efficacy and selectivity of irinotecan against human tumor xenografts. The aim of this study was to delineate the mechanism responsible for the observed efficacy targeting on HIF-1α and its transcriptionally regulated genes VEGF and CAIX.MethodsWe investigated the mechanism of HIF-1α inhibition by MSC and its critical role in the therapeutic outcome by generating HIF-1α stable knockdown (KD) human head and neck squamous cell carcinoma, FaDu by transfecting HIF-1α short hairpin RNA.ResultsWhile cytotoxic efficacy in combination with methylselenic acid (MSA) with SN-38 (active metabolites of MSC and irinotecan) could not be confirmed in vitro against normoxic tumor cells, the hypoxic tumor cells were more sensitive to the combination. Reduction in HIF-1α either by MSA or shRNA knockdown resulted in significant increase in cytotoxicity of SN38 in vitro against hypoxic, but not the normoxic tumor cells. Similarly, in vivo, either MSC in combination with irinotecan treatment of parental xenografts or HIF-1α KD tumors treated with irinotecan alone resulted in comparable therapeutic response and increase in the long-term survival of mice bearing FaDu xenografts.ConclusionsOur results show that HIF-1α is a critical target for MSC and its inhibition was associated with enhanced antitumor activity of irinotecan. Inhibition of HIF-1α appeared to be mediated through stabilization of PHD2, 3 and downregulation of ROS by MSC. Thus, our findings support the development of MSC as a HIF-1α inhibitor in combination chemotherapy.
Journal of Histochemistry and Cytochemistry | 2000
Kathleen M. Darcy; Danilo Zangani; Ann L. Wohlhueter; Ruea-Yea Huang; Mary M. Vaughan; Joy A. Russell; Margot M. Ip
Studies were undertaken to examine the natural role of ErbB2, ErbB3, and ErbB4 during the development of normal rat mammary epithelial cells (MECs) in vivo and in vitro. Immunohistochemical analysis demonstrated that mammary gland terminal end buds expressed abundant ErbB2 and ErbB4 but limited ErbB3 in pubescent rats, whereas luminal epithelial cells in nulliparous rats expressed ErbB2, ErbB3, and/or ErbB4. During pregnancy, ductal epithelial cells and stromal cells expressed abundant ErbB3 but limited ErbB2. Although ErbB2 and ErbB3 were downregulated throughout lactation, both receptors were re-expressed during involution. In contrast, ErbB4 was downregulated throughout pregnancy, lactation, and involution. Immunoblotting and immunoprecipitation studies confirmed the developmental expression of ErbB2 and ErbB3 in the mammary gland and the co-localization of distinct ErbB receptors in the mammary gland of nulliparous rats. In agreement with our in vivo findings, primary culture studies demonstrated that ErbB2 and ErbB3 were expressed in functionally immature, terminally differentiated and apoptotic MECs, and downregulated in functionally differentiated MECs. ErbB receptor signaling was required for epithelial cell growth, functional differentiation, and morphogenesis of immature MECs, and the survival of terminally differentiated MECs. Finally, ErbB4 expression did not interfere with functional differentiation and apoptosis of normal MECs.
Mammalian Genome | 2007
Karen Head; Shiaoching Gong; Sheldon Joseph; Cuidong Wang; Tania Burkhardt; Michael R. Rossi; Jeffrey LaDuca; Sei Ichi Matsui; Mary M. Vaughan; David G. Hicks; Nathaniel Heintz; John K. Cowell
The LGI1 gene has been implicated in the development of epilepsy and the invasion phenotype of glial cells. Controversy over the specific tissue expression pattern of this gene has stemmed from conflicting reports generated using immunohistochemistry and the polymerase chain reaction. LGI1 is one of a four-member family of secreted proteins with high homology and here we demonstrate, using GFP-tagged constructs from the four LGI1family members, that commonly used antibodies against LGI1 cross-react with different family members. With the uncertainty surrounding the use of commercially available antibodies to truly establish the expression pattern of LGI1, we generated transgenic mice carrying the LGI1-containing BAC, RP23-127G7, which had been modified to express the GFP reporter gene under the control of the endogenous regulatory elements required for LGI1 expression. Three founder mice were generated, and immunohistochemistry was used to determine the tissue-specific pattern of expression. In the brain, distinct regions of glial and neuronal cell expression were identified, as well as the choriod plexus, which is largely pia-derived. In addition, strong expression levels were identified in glandular regions of the prostate, individual tubules in the kidney, sympathetic ganglia in the kidney, sebaceous glands in the skin, the islets of Langerhans, the endometrium, and the ovary and testes. All other major organs analyzed were negative. The pattern of reporter gene expression was identical in three individual founder mice, arguing against a position effect altering expression profile due to the integration site of the BAC.
Leukemia Research | 2011
George Deeb; Mary M. Vaughan; Ian McInnis; Laurie A. Ford; Sheila N.J. Sait; Petr Starostik; Meir Wetzler; Terry Mashtare; Eunice S. Wang
We examined the predictive impact of HIF-1α protein expression on clinical outcome of 84 normal karyotype acute myeloid leukemia (NK-AML) patients (median age 66.5 years) at our institute. Thirty percent of NK-AML cells expressed cytoplasmic HIF-1α. In univariate analysis, low HIF-1α (≤ 5%, n = 66) was associated with improved event-free survival (p = 0.0453, HR = 0.22). Multivariate analysis incorporating age, complete remission, FLT3-ITD mutation, and marrow blast percentage demonstrated that HIF-1α was independently associated with poorer overall and event-free survival. HIF-1α expression correlated with VEGF-C but not VEGF-A, marrow angiogenesis, FLT3 ITD or NPM1 mutations. These results support HIF-1α as an outcome marker for NK-AML.
Breast Cancer Research and Treatment | 2001
Patricia A. Masso-Welch; Janet S. Winston; Stephen B. Edge; Kathleen M. Darcy; Harold L. Asch; Mary M. Vaughan; Margot M. Ip
Protein kinase C (PKC) eta is a PKC isoform whose upregulation is associated with differentiation in many epithelial tissues, including the rat mammary gland. The purpose of this study was to examine whether PKC eta is altered, in expression or localization, in human breast cancer. Paraffin sections of 49 in situ breast lesions, 29 invasive breast tumors, and nine normal breast biopsies were examined for PKC eta expression by immunohisto chemistry. Adjacent regions of normal epithelium, and in situ lesions that were present adjacent to invasive lesions were also analyzed. In normal epithelium, regardlessof the presence of adjacent in situ or invasive lesions, PKC eta was present in the cytoplasm of the luminal epithelium, and increased inareas of normal lobular development, similar to normal rat mammary gland. PKC eta staining intensity was homogeneous in normal lobules, but heterogeneous in in situ and invasive lesions, being focally increased in cells with aberrant nuclear morphology. In situ lesions were similar to adjacent normal epithelium in average staining intensity, regardless of whether invasion was also present. However, the invasive lesions themselves were significantly decreased in staining intensity compared to adjacent in situ lesions. In addition, 75% of invasive breast cancer lesions showed decreased staining relative to adjacent normal epithelium, compared to 37% of in situ lesions. The invasive tumors which possessed high PKC eta staining were associated with positive lymph node status. These results demonstrate that quantitative and qualitative alterations in PKC eta occur in human breast cancers.
Journal of Translational Medicine | 2013
Natalie Punt; Haikuo Tang; Joanna Hillman; Mary M. Vaughan; Wiam Bshara; Rose Pitoniak; Elizabeth A. Repasky
BackgroundStudies of primary patient tumor xenografts grown in immunodeficient mice have shown that these tumors histologically and genetically closely resemble the original tumors. These patient xenograft models are becoming widely used for therapeutic efficacy studies. Because many therapies are directed at tumor stromal components and because the tumor microenvironment also is known to influence the response of a tumor to therapy, it is important to understand the nature of the stroma and, in particular, the vascular supply of patient xenografts.MethodsPatient tumor xenografts were established by implanting undisrupted pieces of patient tumors in SCID mice. For this study, formalin fixed, paraffin embedded specimens from several types of solid tumors were selected and, using species-specific antibodies which react with formalin fixed antigens, we analyzed the species origin of the stroma and blood vessels that supported tumor growth in these models. Additionally, we investigated the kinetics of the vascularization process in a colon tumor and a mesothelioma xenograft. In mice bearing a head and neck xenograft, a perfusion study was performed to compare the functionality of the human and mouse tumor vessels.ResultsIn patient tumors which successfully engrafted, the human stroma and vessels which were engrafted as part of the original tumor did not survive and were no longer detectable at the time of first passage (15–25 weeks). Uniformly, the stroma and vessels supporting the growth of these tumors were of murine origin. The results of the kinetic studies showed that the loss of the human vessels and vascularization by host vessels occurred more rapidly in a colon tumor (by 3 weeks) than in a mesothelioma (by 9 weeks). Finally, the perfusion studies revealed that while mouse vessels in the periphery of the tumor were perfused, those in the central regions were rarely perfused. No vessels of human origin were detected in this model.ConclusionsIn the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts.
Immunological Investigations | 2011
Zohara Sternberg; Peter T. Ostrow; Mary M. Vaughan; Trevor Chichelli; Frederick Munschauer
This pilot study used immunohistochemical techniques to investigate the advanced glycation end-product (AGE) Nepsilon-(carboxymethyl)lysine (CML) and its receptor (RAGE) in the brains of multiple sclerosis (MS) patients, comparing them with the brains of patients with Alzheimers disease (AD) (positive controls) and with age-matched control subjects (negative controls). Postmortem slides derived from the hippocampi of MS patients, AD patients, and controls were stained with monoclonal antibodies for CML and human RAGE. Results showed increased AGE and RAGE immunostaining in the hippocampi of MS patients, similar to AD patients.