Mary Miu Yee Waye
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Miu Yee Waye.
Journal of Biological Chemistry | 2000
Yuki Sugiyama; Atsushi Suzuki; Masaru Kishikawa; Rika Akutsu; Tomonori Hirose; Mary Miu Yee Waye; Stephan K. W. Tsui; Shosei Yoshida; Shigeo Ohno
Previously, we identified a new mammalian sHSP, MKBP, as a myotonic dystrophy protein kinase-binding protein, and suggested its important role in muscle maintenance (Suzuki, A., Sugiyama, Y., Hayashi, Y., Nyu-i, N., Yoshida, M., Nonaka, I., Ishiura, S., Arahata, K., and Ohno, S. (1998) J. Cell Biol. 140, 1113–1124). In this paper, we develop the former work by performing extensive characterization of five of the six sHSPs so far identified, that is, HSP27, αB-crystallin, p20, MKBP/HSPB2, and HSPB3, omitting lens-specific αA-crystallin. Tissue distribution analysis revealed that although each sHSP shows differential constitutive expression in restricted tissues, tissues that express all five sHSPs are only muscle-related tissues. Especially, the expressions of HSPB3, identified for the first time as a 17-kDa protein in this paper, and MKBP/HSPB2 are distinctly specific to muscles. Moreover, these sHSPs form an oligomeric complex with an apparent molecular mass of 150 kDa that is completely independent of the oligomers formed by HSP27, αB-crystallin, and p20. The expressions of MKBP/HSPB2 and HSPB3 are induced during muscle differentiation under the control of MyoD, suggesting that the sHSP oligomer comprising MKBP/HSPB2 and HSPB3 represents an additional system closely related to muscle function. The functional divergence among sHSPs in different oligomers is also demonstrated in several ways: 1) an interaction with myotonic dystrophy protein kinase, which has been suggested to be important for the maintenance of myofibril integrity, was observed only for MKBP/HSPB2; 2) a myotube-specific association with actin bundles was observed for HSP27 and αB-crystallin, but not for MKBP/HSPB2; and 3) sHSPs whose mRNAs are induced by heat shock are αB-crystallin and HSP27. Taken together, the results suggest that muscle cells develop two kinds of stress response systems composed of diverged sHSP members, and that these systems work independently in muscle maintenance and differentiation.
Circulation | 1997
David M. Hwang; Adam A. Dempsey; Ruoxiang Wang; Mojgan Rezvani; J.David Barrans; MHSc; Ken-Shwo Dai; Hui-Yuan Wang; Hong Ma; Eva Cukerman; Yu-Qing Liu; Jian-Ren Gu; Jing-Hui Zhang; Stephen Kwok-Wing Tsui; Mary Miu Yee Waye; Kwok-Pui Fung; C.Y. Lee; Choong-Chin Liew
BACKGROUND Large-scale partial sequencing of cDNA libraries to generate expressed sequence tags (ESTs) is an effective means of discovering novel genes and characterizing transcription patterns in different tissues. To catalogue the identities and expression levels of genes in the cardiovascular system, we initiated large-scale sequencing and analysis of human cardiac cDNA libraries. METHODS AND RESULTS Using automated DNA sequencing, we generated 43,285 ESTs from human heart cDNA libraries. An additional 41,619 ESTs were retrieved from public databases, for a total of 84,904 ESTs representing more than 26 million nucleotides of raw cDNA sequence data from 13 independent cardiovascular system-based cDNA libraries. Of these, 55% matched to known genes in the Genbank/EMBL/DDBJ databases, 33% matched only to other ESTs, and 12% did not match to any known sequences (designated cardiovascular system-based ESTs, or CVbESTs). ESTs that matched to known genes were classified according to function, allowing for detection of differences in general transcription patterns between various tissues and developmental stages of the cardiovascular system. In silico Northern analysis of known gene matches identified widely expressed cardiovascular genes as well as genes putatively exhibiting greater tissue specificity or developmental stage specificity. More detailed analysis identified 48 genes potentially overexpressed in cardiac hypertrophy, at least 10 of which were previously documented as differentially expressed. Computer-based chromosomal localizations of 1048 cardiac ESTs were performed to further assist in the search for disease-related genes. CONCLUSIONS These data represent the most extensive compilation of cardiovascular gene expression information to date. They further demonstrate the untapped potential of genome research for investigating questions related to cardiovascular biology and represent a first-generation genome-based resource for molecular cardiovascular medicine.
Gene | 1998
Kk Chan; Stephen Kwok-Wing Tsui; Simon Ming-Yuen Lee; Sharon Chui Wah Luk; Choong Chin Liew; Kwok-Pui Fung; Mary Miu Yee Waye; Cheuk Yu Lee
A full-length cDNA clone encoding a novel LIM-only protein was isolated and sequenced from a human fetal heart cDNA library. This full-length clone consists of 1416 base pairs and has a predicted open reading frame (ORF) encoding 279 amino acids. The ORF of this polypeptide codes for the human heart-specific four and a half LIM-only protein 2 (FHL2). It possesses an extra zinc finger that is a half LIM domain and four repeats of LIM domain. When the human FHL2 cDNA probe was used to hybridize with poly-A RNA of various human tissues, a very strong signal could be seen in heart tissues, and only moderately low signals could be detected in placenta, skeletal muscle and ovary. Virtually no signal could be detected in brain, lung, liver, kidney, pancreas, spleen, thymus, prostate, testis, small intestine, colon or peripheral blood leukocyte. FHL2 was mapped to chromosome 2q12-q13 by fluorescent in-situ hybridization (FISH).
Pharmacogenetics | 2004
Ophelia Q. P. Yin; Brian Tomlinson; Mary Miu Yee Waye; Albert H. L. Chow; Moses S. S. Chow
OBJECTIVE Ginkgo biloba was found to exert a significant inductive effect on CYP2C19 activity. This study was designed to investigate the potential herb-drug interaction between G. biloba and omeprazole, a widely used CYP2C19 substrate, in subjects with different CYP2C19 genotypes. METHODS Eighteen healthy Chinese subjects previously genotyped for CYP2C19 were selected. All subjects received a single omeprazole 40 mg at baseline and then at the end of a 12-day treatment period with G. biloba (140 mg, bid). Multiple blood samples were collected over 12 h, and 24 h urine was collected post omeprazole dosing. Plasma and urine concentrations of omeprazole and its metabolites, 5-hydroxyomeprazole and omeprazole sulfone, were determined, and their pharmacokinetics calculated non-compartmentally. RESULTS Plasma concentrations of omeprazole and omeprazole sulfone were significantly decreased, and 5-hydroxyomeprazole significantly increased following G. biloba administration in comparison to baseline. A significant decrease in the ratio of area under the plasma concentration-time curve (AUC) of omeprazole to 5-hydroxyomeprazole was observed in the homozygous extensive metabolizers, heterozygous extensive metabolizers, and poor metabolizers, respectively. The decrease was greater in PMs than EMs. No significant changes in the AUC ratios of omeprazole to omeprazole sulfone were observed. Renal clearance of 5-hydroxyomeprazole was significantly decreased after G. biloba, but the change was not significantly different among the three genotype groups. CONCLUSION Our results show that G biloba can induce omeprazole hydroxylation in a CYP2C19 genotype-dependent manner and concurrently reduce the renal clearance of 5-hydroxyomeprazole. Co-administration of G. biloba with omeprazole or other CYP2C19 substrates may significantly reduce their effect, but further studies are warranted.
Life Sciences | 2002
Simon Ming-Yuen Lee; Mandy L. Y. Li; Yu Chung Tse; Steve Chin Lung Leung; Macey Mei Sze Lee; Stephen Kwok-Wing Tsui; Kwok-Pui Fung; Cheuk Yu Lee; Mary Miu Yee Waye
Paeoniae Radix (PR) is the root of traditional Chinese Herb named Paeonia lactiflora Pallas, which is commonly used to treat liver diseases in China for centuries. Several earlier studies have indicated that PR has anticancer growth activities, however the mechanism underlying these activities was unclear and remained to be elucidated. In this study, we evaluated the molecular mechanism of the effect of PR on human hepatoma cell lines, HepG2 and Hep3B. Our results showed that the water-extract of Paeoniae Radix (PRE) had inhibitory effect on the growth of both HepG2 and Hep3B cell lines. The induction of internucleosomal DNA fragmentation and chromatin condensation appearance, and accumulation of sub-G1 phase of cell cycle profile in PRE treated hepatoma cells evidenced that the cytotoxicity of PRE to the hepatoma cells is through activation of the cell death program, apoptosis. The activation of apoptosis by PRE is independent of the p53 pathway as Hep3B cell is p53-deficient. In addition, the differential gene expression of PRE treated HepG2 was examined by cDNA microarray technology and RT-PCR analysis. We found that the gene expression of BNIP3 was up-regulated while ZK1, RAD23B, and HSPD1 were down-regulated during early apoptosis of the hepatoma cell mediated by PRE. The elucidation of the drug targets of PR on inhibition of tumor cells growth should enable further development of PR for liver cancer therapy.
Allergy | 2009
Ting F. Leung; Hing Yee Sy; Maggie C.Y. Ng; Iris H.S. Chan; G. W. K. Wong; N. L. S. Tang; Mary Miu Yee Waye; C. W. K. Lam
Background: Single‐nucleotide polymorphism (SNP)‐based genome‐wide association study revealed that markers on chromosome 17q21 were linked to childhood asthma but not atopy in Caucasians, with the strongest signal being detected for the SNP rs7216389 in the ORMDL3 gene. Such association was unknown in Chinese. This study delineated the allele and genotype frequencies of 10 SNPs at chromosome 17q21, and investigated the relationship between these SNPs and asthma and plasma IgE in southern Chinese children.
Oncogene | 2006
Jie Liu; Z. Lian; S. Han; Mary Miu Yee Waye; Hua Wang; Mengchao Wu; Kin-fai Wu; J. Ding; Patrick Arbuthnot; Michael Kew; D. Fan; Mark A. Feitelson
Hepatitis B virus (HBV)-encoded X antigen (HBxAg) contributes to the development of hepatocellular carcinoma (HCC). A frequent characteristic of HCC is reduced or absent expression of the cell adhesion protein, E-cadherin, although it is not known whether HBxAg plays a role. To address this, the levels of E-cadherin were determined in HBxAg-positive and -negative HepG2 cells in culture, and in tumor and surrounding nontumor liver from a panel of HBV carriers. The results showed an inverse relationship between HBxAg and E-cadherin expression both in tissue culture and in vivo. In HBxAg-positive cells, E-cadherin was suppressed at both the mRNA and protein levels. This was associated with hypermethylation of the E-cadherin promoter. Depressed E-cadherin correlated with HBxAg trans-activation function, as did the migration of HepG2 cells in vitro. Decreased expression of E-cadherin was also associated with the accumulation of β-catenin in the cytoplasm and/or nuclei in tissues and cell lines, which is characteristic of activated β-catenin. Additional work showed that HBxAg-activated β-catenin. Together, these results suggest that the HBxAg is associated with decreased expression of E-cadherin, accumulation of β-catenin in the cytoplasm and nucleus, and increased cell migration, which may contribute importantly to hepatocarcinogenesis.
Oncogene | 2000
Valérie Mils; Véronique Baldin; Françoise Goubin; Isabelle Pinta; Catherine Papin; Mary Miu Yee Waye; Alain Eychène; Bernard Ducommun
CDC25 dual-specificity phosphatases are essential regulators that activate cyclin-dependent kinases (CDKs) at critical stages of the cell cycle. In human cells, CDC25A and C are involved in the control of G1/S and G2/M respectively, whereas CDC25B is proposed to act both in S phase and G2/M. Evidence for an interaction between CDC25 phosphatases and members of the 14-3-3 protein family has been obtained in vitro and in vivo in several organisms. On the basis of the work performed with CDC25C, it has been proposed that phosphorylation is required to mediate the interaction with 14-3-3. Here we have examined the molecular basis of the interaction between CDC25B phosphatases and 14-3-3 proteins. We show that in the two-hybrid assay all three splice variants of CDC25B interact similarly and strongly with 14-3-3η, β and ζ proteins, but poorly with ε and Θ. In vitro, CDC25B interacts at a low level with 14-3-3β, ε, ζ, η, and Θ isoforms. This interaction is not increased upon phosphorylation of CDC25B by CHK1 and is not abolished by dephosphorylation. In contrast, a specific, strong interaction between CDC25B and 14-3-3ζ and η isoforms is revealed by a deletion of 288 residues in the amino-terminal region of CDC25B. This interaction requires the integrity of Ser 323, although it is independent of phosphorylation. Thus, interaction between 14-3-3 proteins and CDC25B is regulated in a manner that is different from that with CDC25C. We propose that, in addition to a low affinity binding site that is available for all 14-3-3 isoforms, post-translational modification of CDC25B in vivo exposes a high-affinity binding site that is specific for the ζ and η14-3-3 isoforms.
Journal of Ethnopharmacology | 2008
Kit-Man Lau; Kin-Ming Lee; Chi-Man Koon; Crystal Sao-Fong Cheung; Ching-Po Lau; Hei-Ming Ho; Mavis Y.H. Lee; Shannon Wing Ngor Au; Christopher Hon Ki Cheng; Clara Bik-San Lau; Stephen Kwok-Wing Tsui; David Chi Cheong Wan; Mary Miu Yee Waye; Kam-Bo Wong; Chun-Kwok Wong; Christopher W.K. Lam; Ping Chung Leung; Kwok-Pui Fung
Abstract Background Severe acute respiratory syndrome (SARS) is a life-threatening form of pneumonia caused by SARS coronavirus (SARS-CoV). From late 2002 to mid 2003, it infected more than 8000 people worldwide, of which a majority of cases were found in China. Owing to the absence of definitive therapeutic Western medicines, Houttuynia cordata Thunb. (Saururaceae) (HC) was shortlisted by Chinese scientists to tackle SARS problem as it is conventionally used to treat pneumonia. Aim of the study The present study aimed to explore the SARS-preventing mechanisms of HC in the immunological and anti-viral aspects. Results Results showed that HC water extract could stimulate the proliferation of mouse splenic lymphocytes significantly and dose-dependently. By flow cytometry, it was revealed that HC increased the proportion of CD4+ and CD8+ T cells. Moreover, it caused a significant increase in the secretion of IL-2 and IL-10 by mouse splenic lymphocytes. In the anti-viral aspect, HC exhibited significant inhibitory effects on SARS-CoV 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp). On the other hand, oral acute toxicity test demonstrated that HC was non-toxic to laboratory animals following oral administration at 16g/kg. Conclusion The results of this study provided scientific data to support the efficient and safe use of HC to combat SARS.
Gene | 1998
Simon Ming-Yuen Lee; Stephen Kwok-Wing Tsui; Kk Chan; Merce Garcia-Barcelo; Mary Miu Yee Waye; Kwok-Pui Fung; Choong Chin Liew; Cheuk Yu Lee
We have isolated and sequenced a human heart cDNA clone encoding a novel LIM-only protein. This full-length cDNA clone has a predicted open reading frame (ORF) encoding 280 amino acids. The ORF of this cDNA codes for a LIM-only protein that possesses four repeats of LIM domain and an extra zinc finger and this putative protein is named four-and-a-half LIM domain protein 1 (FHL1). FHL1 is unique when compared with other LIM-only proteins because it possesses an odd number of zinc fingers. When the FHL1 cDNA probe was used to hybridize with poly-(A) RNA of various human tissues, a very strong signal was detected in skeletal muscle, a moderate one in the heart; only weak signals were associated with the placenta, ovary, prostate, testis, small intestine, colon and spleen, and virtually no signal could be detected in brain, lung, liver, kidney, pancreas, thymus and peripheral blood leukocytes. The FHL1 gene was located to human chromosome at Xq27.2 by somatic cell hybrid mapping, fluorescent in situ hybridization (FISH) and radiation hybrid mapping.