Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Oguike is active.

Publication


Featured researches published by Mary Oguike.


The Journal of Infectious Diseases | 2010

Two Nonrecombining Sympatric Forms of the Human Malaria Parasite Plasmodium ovale Occur Globally

Colin J. Sutherland; Naowarat Tanomsing; Debbie Nolder; Mary Oguike; Charlie Jennison; Sasithon Pukrittayakamee; Christiane Dolecek; Tran Tinh Hien; Virgílio E. do Rosário; Ana Paula Arez; João Pinto; Pascal Michon; Ananias A. Escalante; François Nosten; Martina Burke; Rogan Lee; Marie Blaze; Thomas D. Otto; John W. Barnwell; Arnab Pain; John V. Williams; Nicholas J. White; Nicholas P. J. Day; Georges Snounou; Peter J. Lockhart; Peter L. Chiodini; Mallika Imwong; Spencer D. Polley

BACKGROUND Malaria in humans is caused by apicomplexan parasites belonging to 5 species of the genus Plasmodium. Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease is not known. Dimorphism in defined genes has led to P. ovale parasites being divided into classic and variant types. We hypothesized that these dimorphs represent distinct parasite species. METHODS Multilocus sequence analysis of 6 genetic characters was carried out among 55 isolates from 12 African and 3 Asia-Pacific countries. RESULTS Each genetic character displayed complete dimorphism and segregated perfectly between the 2 types. Both types were identified in samples from Ghana, Nigeria, São Tomé, Sierra Leone, and Uganda and have been described previously in Myanmar. Splitting of the 2 lineages is estimated to have occurred between 1.0 and 3.5 million years ago in hominid hosts. CONCLUSIONS We propose that P. ovale comprises 2 nonrecombining species that are sympatric in Africa and Asia. We speculate on possible scenarios that could have led to this speciation. Furthermore, the relatively high frequency of imported cases of symptomatic P. ovale infection in the United Kingdom suggests that the morbidity caused by ovale malaria has been underestimated.


American Journal of Tropical Medicine and Hygiene | 2014

Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

Meera Venkatesan; Nahla B Gadalla; Kasia Stepniewska; Prabin Dahal; Christian Nsanzabana; Clarissa Moriera; Ric N. Price; Andreas Mårtensson; Philip J. Rosenthal; Grant Dorsey; Colin J. Sutherland; Philippe J Guerin; Timothy M. E. Davis; Didier Ménard; Ishag Adam; George Ademowo; Cesar Arze; Frederick N. Baliraine; Nicole Berens-Riha; Anders Björkman; Steffen Borrmann; Francesco Checchi; Meghna Desai; Mehul Dhorda; Abdoulaye Djimde; Badria B. El-Sayed; Teferi Eshetu; Frederick Eyase; Catherine O. Falade; Jean-François Faucher

Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 – 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36–17.97, P < 0.001) were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine.


International Journal for Parasitology | 2011

Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities

Mary Oguike; Martha Betson; Martina Burke; Debbie Nolder; J. Russell Stothard; Immo Kleinschmidt; Carla Proietti; Teun Bousema; Mathieu Ndounga; Kazuyuki Tanabe; Edward H. Ntege; Richard Culleton; Colin J. Sutherland

Graphical abstract Research highlights ► We propose that two related species of malaria parasite cause ovale malaria. ► Discriminatory PCR tests identified both species in African surveys. ► Plasmodium ovale curtisi and Plasmodium ovale wallikeri were found together in time and space. ► Lack of recombination between them is not due to geographic or temporal separation. ► Therefore, the species barrier may be maintained by a biological mechanism(s).


Antimicrobial Agents and Chemotherapy | 2011

Increased pfmdr1 Copy Number and Sequence Polymorphisms in Plasmodium falciparum Isolates from Sudanese Malaria Patients Treated with Artemether-Lumefantrine

Nahla B Gadalla; Ishag Adam; Salah-Eldin G El-zaki; Sahar Bashir; Izdihar Mukhtar; Mary Oguike; Amal Gadalla; Fathi Mansour; David C. Warhurst; Badria El-Sayed; Colin J. Sutherland

ABSTRACT Molecular markers for surveillance of Plasmodium falciparum resistance to current antimalarials are sorely needed. A 28-day efficacy study of artemether-lumefantrine in eastern Sudan identified 5 treatment failures among 100 evaluable patients; 9 further individuals were parasite positive by PCR during follow-up. Polymorphisms in pfatpase6 and pfmdr1 were evaluated by DNA sequencing. One individual carried parasites with a novel pfmdr1 polymorphism (F1044L). pfmdr1 gene amplification in parasites prior to treatment occurred in three individuals who had recurrent infection during follow-up.


BMJ Open | 2013

An observational study of malaria in British travellers: Plasmodium ovale wallikeri and Plasmodium ovale curtisi differ significantly in the duration of latency

Debbie Nolder; Mary Oguike; H Maxwell-Scott; Ha Niyazi; Smith; Peter L. Chiodini; Cj Sutherland

Objectives Ovale malaria is caused by two closely related species of protozoan parasite: Plasmodium ovale curtisi and Plasmodium ovale wallikeri Although clearly distinct genetically, there have been no studies comparing the morphology, life cycle or epidemiology of these parasites. We tested the hypothesis that the two species differ in the duration of latency prior to presentation with symptoms of blood-stage infection. Design PCR was used to identify P ovale curtisi and P ovale wallikeri infections among archived blood from UK malaria patients. Latency periods, estimated as the time between entry into the UK and diagnosis of malaria, were compared between the two groups. Setting UK National Reference Laboratory. Participants None. Archived parasite material and surveillance data for 74 P ovale curtisi and 60 P ovale wallikeri infections were analysed. Additional epidemiological data were taken from a database of 1045 imported cases. Outcomes None. Results No differences between the two species were identified by a detailed comparison of parasite morphology (N=9, N=8, respectively) and sex ratio (N=5, N=4) in archived blood films. The geometric mean latency period in P ovale wallikeri was 40.6 days (95% CI 28.9 to 57.0), whereas that for P ovale curtisi was more than twice as long at 85.7 days (95% CI 66.1 to 111.1; p=0.002). Further, the proportion of ovale malaria sensu lato which occurred in patients reporting chemoprophylaxis use was higher than for Plasmodium falciparum (OR 7.56; p<0.0001) or P vivax (OR 1.82; p<0.0001). Conclusions These findings provide the first difference of epidemiological significance observed between the two parasites which cause ovale malaria, and suggest that control measures aimed at P falciparum may not be adequate for reducing the burden of malaria caused by P ovale curtisi and P ovale wallikeri.


Angewandte Chemie | 2016

Paper‐Origami‐Based Multiplexed Malaria Diagnostics from Whole Blood

Gaolian Xu; Debbie Nolder; Julien Reboud; Mary Oguike; Donelly A. van Schalkwyk; Colin J. Sutherland; Jonathan M. Cooper

Abstract We demonstrate, for the first time, the multiplexed determination of microbial species from whole blood using the paper‐folding technique of origami to enable the sequential steps of DNA extraction, loop‐mediated isothermal amplification (LAMP), and array‐based fluorescence detection. A low‐cost handheld flashlight reveals the presence of the final DNA amplicon to the naked eye, providing a “sample‐to‐answer” diagnosis from a finger‐prick volume of human blood, within 45 min, with minimal user intervention. To demonstrate the method, we showed the identification of three species of Plasmodium, analyzing 80 patient samples benchmarked against the gold‐standard polymerase chain reaction (PCR) assay in an operator‐blinded study. We also show that the test retains its diagnostic accuracy when using stored or fixed reference samples.


International Journal for Parasitology | 2016

Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species.

Hifzur Rahman Ansari; Thomas J. Templeton; Amit Kumar Subudhi; Abhinay Ramaprasad; Jianxia Tang; Feng Lu; Raeece Naeem; Yasmeen Hashish; Mary Oguike; Ernest Diez Benavente; Taane G. Clark; Colin J. Sutherland; John W. Barnwell; Richard Culleton; Jun Cao; Arnab Pain

Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.


PLOS ONE | 2016

Assessment of Markers of Antimalarial Drug Resistance in Plasmodium falciparum Isolates from Pregnant Women in Lagos, Nigeria.

Chimere Agomo; Wellington Oyibo; Colin J. Sutherland; Rachael Hallet; Mary Oguike

Background The use of antimalarial drugs for prevention and treatment is a major strategy in the prevention of malaria in pregnancy. Although sulphadoxine-pyrimethamine (SP) is currently recommended for intermittent preventive treatment of malaria during pregnancy in Nigeria, previously used drugs for prophylaxis such as chloroquine (CQ) and pyrimethamine are accessible as they are purchased over the counter. This study describes the markers of absence or presence of resistance to quinoline (Pfcrt and Pfmdr 1) and type 1 antifolate antimalarial medicines (Pfdhfr). Methods Plasmodium falciparum-positive dried blood spots from pregnant women attending antenatal clinics for the first time during current pregnancy were investigated for the presence of mutations at codons 72–76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene by real time polymerase chain reaction (PCR) using haplotype-specific probes. PCR followed by sequence analysis was used to identify mutations at codons 86, 184, 1034, 1042 and 1246 of P. falciparum multi-drug resistance-1 (Pfmdr1) gene; and codons 16, 50, 51, 59, 108, 140 and 164 of Pfdhfr gene. Results Two haplotypes of Pfcrt (n = 54) were observed: CVMNK 13(24.2%) and CVIET 41 (75.9%) of the samples. The SVMNT haplotype was absent in this population. The Pfmdr1 (n = 28) haplotypes were NYSND 15(53.6%), YYSND 5(17.9%), NFSND 6(21.4%) and YFSND 2(7.1%). The Pfdhfr (n = 15) were ACNCSVI 4(26.7%), and ACICNSVI 1(6.7%) and ACIRNVI 10 (66.7%). The rate of occurrence of Pfcrt 76T, Pfdhfr108N, Pfmdr186Yand184F were 75.9%, 73.3%, 25% and 28.1% respectively. The Pfmdr1 86Y was associated with low parasitaemia (median = 71 parasites/μl, P = 0.024) while Pfcrt 76T was associated with young maternal age (mean 24.1 ± 4.5 years; P = 0.006). The median parasitaemia were similar (P>0.05) in wild and mutant strains of Pfcrt 76, Pfmdr1 184 and Pfdhfr 108. There was no association between gravidity or gestational age of the women and presence of mutations in the Pfcrt, Pfmdr1 or Pfdhfr genes (P>0.05). Conclusion Markers of resistance to chloroquine and pyrimethamine were high, whereas cycloguanil-resistance marker was not present in the studied population. The low level of mutations in the Pfmdr1gene indicates likely efficacy of amodiaquine against malaria in pregnancy.


Journal of Antimicrobial Chemotherapy | 2015

Alternatively spliced transcripts and novel pseudogenes of the Plasmodium falciparum resistance-associated locus pfcrt detected in East African malaria patients

Nahla B Gadalla; M Malmberg; Ishag Adam; Mary Oguike; K Beshir; Se Elzaki; Izdihar Mukhtar; Amal Gadalla; David C. Warhurst; B Ngasala; A Mårtensson; Badria El-Sayed; Jp Gil; Colin J. Sutherland

Objectives Polymorphisms in the lysosomal transporter encoded by the pfcrt gene directly impact on Plasmodium falciparum susceptibility to aminoquinolines. The Lys76Thr mutation is the critical change conferring chloroquine resistance in vitro and in vivo, but always occurs with additional non-synonymous changes in the pfcrt coding sequence. We sought to better describe pfcrt polymorphisms distal to codon 76. Methods Small-volume samples (≤500 μL) of parasite-infected blood collected directly from malaria patients presenting for treatment in Sudan and Tanzania were immediately preserved for RNA extraction. The pfcrt locus was amplified from cDNA preparations by nested PCR and sequenced directly to derive full-length mRNA sequences. Results In one of two sites in Sudan, two patients were found with an unorthodox spliced form of pfcrt mRNA in which two exons were skipped, but it was not possible to test for the presence of the putative protein products of these aberrant transcripts. Genomic DNA sequencing from dried blood spots collected in parallel confirmed the presence of spliced pfcrt pseudogenes in a minority of parasite isolates. Full-length cDNA from conventionally spliced mRNA molecules in all study sites demonstrated the existence of a variety of pfcrt haplotypes in East Africa, and thus provides evidence of intragenic recombination. Conclusions The presence of pseudogenes, although unlikely to have any direct public health impact, may confound results obtained from simple genotyping methods that consider only codon 76 and the adjacent residues of pfcrt.


International Journal for Parasitology-Drugs and Drug Resistance | 2016

Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V.

Mary Oguike; Catherine O. Falade; Elvis Shu; Izehiuwa G. Enato; Ismaila Watila; Ebenezer Baba; Jane Bruce; Jayne Webster; Prudence Hamade; Sylvia Meek; Daniel Chandramohan; Colin J. Sutherland; David C. Warhurst; Cally Roper

There are few published reports of mutations in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes in P. falciparum populations in Nigeria, but one previous study has recorded a novel dhps mutation at codon 431 among infections imported to the United Kingdom from Nigeria. To assess how widespread this mutation is among parasites in different parts of the country and consequently fill the gap in sulfadoxine-pyrimethamine (SP) resistance data in Nigeria, we retrospectively analysed 1000 filter paper blood spots collected in surveys of pregnant women and children with uncomplicated falciparum malaria between 2003 and 2015 from four sites in the south and north. Genomic DNA was extracted from filter paper blood spots and placental impressions. Point mutations at codons 16, 50, 51, 59, 108, 140 and 164 of the dhfr gene and codons 431, 436, 437, 540, 581 and 613 of the dhps gene were evaluated by nested PCR amplification followed by direct sequencing. The distribution of the dhps-431V mutation was widespread throughout Nigeria with the highest prevalence in Enugu (46%). In Ibadan where we had sequential sampling, its prevalence increased from 0% to 6.5% between 2003 and 2008. Although there were various combinations of dhps mutations with 431V, the combination 431V + 436A + 437G+581G+613S was the most common. All these observations support the view that dhps-431V is on the increase. In addition, P. falciparum DHPS crystal structure modelling shows that the change from Isoleucine to Valine (dhps-431V) could alter the effects of both S436A/F and A437G, which closely follow the 2nd β-strand. Consequently, it is now a research priority to assess the implications of dhps-VAGKGS mutant haplotype on continuing use of SP in seasonal malaria chemoprevention (SMC) and intermittent preventive treatment in pregnancy (IPTp). Our data also provides surveillance data for SP resistance markers in Nigeria between 2003 and 2015.

Collaboration


Dive into the Mary Oguike's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ishag Adam

University of Khartoum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teun Bousema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Izdihar Mukhtar

Federal Ministry of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge