Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Proctor is active.

Publication


Featured researches published by Mary Proctor.


Journal of General Virology | 2011

Genomic analysis of the first laboratory-mouse papillomavirus

Joongho Joh; A. Bennett Jenson; William King Jr; Mary Proctor; Arvind Ingle; John P. Sundberg; Shin-je Ghim

A papillomavirus (PV) that naturally infects laboratory mice will provide an extremely valuable tool for PV research. We describe here the isolation, cloning and molecular analysis of the first novel laboratory-mouse PV, designated MusPV. This agent, recently identified in the tissues from florid and asymmetrical papillomas on the face of nude mice (NMRI-Foxn1(nu)/Foxn1(nu)), was demonstrated to be transmissible to immunocompetent mice (Ingle et al., 2010). The MusPV genome is 7510 bp in length, is organized similarly to those of other PVs and has at least seven ORFs (E1, E2, E4, E6, E7, L1 and L2). Phylogenetic analysis indicates that MusPV belongs to the π genus together with four other rodent PVs (McPV2, MaPV1, MmiPV and RnPV1). Of the rodent PVs, MusPV appears most closely related to Mastomys coucha PV (McPV2), with 65 % genomic homogeneity and 80 % L1 amino acid similarity. Rodent PVs, except for MnPV1, do not contain any identifiable retinoblastoma protein (RB) binding sites. MusPV has one putative RB-binding site on the E6 protein but not on the E7 protein. Non-coding regions (NCRs) of PVs maintain multiple binding sites for transcription factors (TFs). The NCR of MusPV has numerous sites for TF binding, of which at least 13 TFs are common to all PVs in the π genus. MusPV provides a potentially valuable, novel mouse model to study mechanisms of infection, oncology and novel preventive and therapeutic approaches in mice that can be translated to diseases caused by human PVs.


PLOS ONE | 2014

Immune Status, Strain Background, and Anatomic Site of Inoculation Affect Mouse Papillomavirus (MmuPV1) Induction of Exophytic Papillomas or Endophytic Trichoblastomas

John P. Sundberg; Tim Stearns; Joongho Joh; Mary Proctor; Arvind Ingle; Kathleen A. Silva; Soheil S. Dadras; A. Bennett Jenson; Shin-je Ghim

Papillomaviruses (PVs) induce papillomas, premalignant lesions, and carcinomas in a wide variety of species. PVs are classified first based on their host and tissue tropism and then their genomic diversities. A laboratory mouse papillomavirus, MmuPV1 (formerly MusPV), was horizontally transmitted within an inbred colony of NMRI-Foxn1nu/Foxn1nu (nude; T cell deficient) mice of an unknown period of time. A ground-up, filtered papilloma inoculum was not capable of infecting C57BL/6J wild-type mice; however, immunocompetent, alopecic, S/RV/Cri-ba/ba (bare) mice developed small papillomas at injection sites that regressed. NMRI-Foxn1nu and B6.Cg-Foxn1nu, but not NU/J-Foxn1nu, mice were susceptible to MmuPV1 infection. B6 congenic strains, but not other congenic strains carrying the same allelic mutations, lacking B- and T-cells, but not B-cells alone, were susceptible to infection, indicating that mouse strain and T-cell deficiency are critical to tumor formation. Lesions initially observed were exophytic papillomas around the muzzle, exophytic papillomas on the tail, and condylomas of the vaginal lining which could be induced by separate scarification or simultaneous scarification of MmuPV1 at all four sites. On the dorsal skin, locally invasive, poorly differentiated tumors developed with features similar to human trichoblastomas. Transcriptome analysis revealed significant differences between the normal skin in these anatomic sites and in papillomas versus trichoblastomas. The primarily dysregulated genes involved molecular pathways associated with cancer, cellular development, cellular growth and proliferation, cell morphology, and connective tissue development and function. Although trichoepitheliomas are benign, aggressive tumors, few of the genes commonly associated with basal cell carcinoma or squamous cells carcinoma were highly dysregulated.


Experimental and Molecular Pathology | 2012

Molecular diagnosis of a laboratory mouse papillomavirus (MusPV).

Joongho Joh; A. Bennett Jenson; Mary Proctor; Arvind Ingle; Kathleen A. Silva; Christopher Potter; John P. Sundberg; Shin-je Ghim

MusPV, a novel papillomavirus (PV) that naturally infects laboratory mice, was isolated and characterized from a colony of NMRI-Foxn1(nu)/Foxn1(nu) (nude) mice in India. Because MusPV may have been missed during routine pathogen screening of mice in colonies worldwide, a variety of detection methods are described to detect MusPV. The clinical and histologic lesions of productive MusPV infections fit PV-associated features, including papillomas, koilocytes within the stratum granulosum of the hyperplastic/acanthotic papillomatous epithelium, and the presence of intranuclear virus particles in koilocytotic cells visualized by electron microscopy. Antiserum against disrupted PV virions, isolated from another species (canine), identified conserved viral antigens in productively infected cells by immunohistochemistry. A rolling circle technique was used to amplify viral circular DNAs followed by endonuclease restriction enzyme digestion to determine the correct size of PV DNA. Consensus PV degenerative primers, My09/11, commonly used to detect many different types of PVs by polymerase chain reaction (PCR), particularly mucosotropic HPVs, also identified MusPV and all rodent PVs tested. Since there was one nucleotide mismatch between the My09/11 primer set and the MusPV template, a new primer set, MusPV-My09/11, was designed to specifically detect MusPV in latent infections and spontaneous MusPV-induced papillomas. Southern blot analysis verified the presence of full size PV DNA in infected tissues. Virus-like particles (VLPs), generated from MusPV L1 genes, provided a substrate for serological testing of naturally and experimentally infected mice. In summary, a series of diagnostic assays were developed and validated to detect MusPV infection in skin tumors and serological response in laboratory mice.


Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine | 2008

Neuroimmune Interaction in Inflammatory Diseases

Peyman Otmishi; Joshiah Gordon; Seraj El-Oshar; Huafeng Li; Juan Guardiola; Mohamed Saad; Mary Proctor; Jerry Yu

The inflammatory response is modulated through interactions among the nervous, endocrine, and immune systems. Intercommunication between immune cells and the autonomic nervous system is a growing area of interest. Spatial and temporal information about inflammatory processes is relayed to the central nervous system (CNS) where neuroimmune modulation serves to control the extent and intensity of the inflammation. Over the past few decades, research has revealed various routes by which the nervous system and the immune system communicate. The CNS regulates the immune system via hormonal and neuronal pathways, including the sympathetic and parasympathetic nerves. The immune system signals the CNS through cytokines that act both centrally and peripherally. This review aims to introduce the concept of neuroimmune interaction and discuss its potential clinical application, in an attempt to broaden the awareness of this rapidly evolving area and open up new avenues that may aid in the treatment of inflammatory diseases.


PLOS ONE | 2012

Molecular Imaging Reveals a Progressive Pulmonary Inflammation in Lower Airways in Ferrets Infected with 2009 H1N1 Pandemic Influenza Virus

Colleen B. Jonsson; Jeremy V. Camp; Albert Wu; Huaiyu Zheng; Jennifer L. Kraenzle; Ashley E. Biller; Carol D. Vanover; Yong Kyu Chu; Chin K. Ng; Mary Proctor; Leslie C. Sherwood; Marlene C. Steffen; Daniel J. Mollura

Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [18F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7–7.0). By days 2 and 3, consolidation (CT) and inflammation ([18F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0–7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [18F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman’s ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time.


Journal of Endocrinology | 2007

Development of cystic glandular hyperplasia of the endometrium in Mullerian inhibitory substance type II receptor–pituitary tumor transforming gene transgenic mice

Shahenda El-Naggar; Mohammad T. Malik; Alvin Martin; Joseph P. Moore; Mary Proctor; Tariq Hamid; Sham S. Kakar

The pituitary tumor transforming gene (PTTG)/securin is an oncogene that is involved in cell cycle regulation and sister chromatid separation. PTTG is highly expressed in various tumors including ovarian tumors, suggesting that PTTG may play a role in ovarian tumorigenesis. Overexpression of PTTG resulted in induction of cellular transformation in vitro and tumor formation in nude mice. To ascertain PTTG function in ovarian tumorigenesis, we generated a transgenic mouse model of PTTG by cloning PTTG cDNA downstream of Mullerian inhibitory substance type II receptor gene promoter (MISIIR) in order to target the ovarian surface epithelium. By screening of transgenic animals, we identified five founders (four males and one female). Using the four male founders, we developed four transgenic lines. PTTG expression was increased in ovarian surface epithelium, ovarian granulosa cells, as well as in the pituitary gland. Transgenic females did not develop any visible ovarian tumors at 8-10 months of age; however, there was an overall increase in the corpus luteum mass in transgenic ovary, suggesting increased luteinization. These changes were associated with an increase in serum LH and testosterone levels. In addition, there was a generalized hypertrophy of the myometrium of MISIIR-PTTG transgenic uteri with cystic glandular and hyperplasia of the endometrium. Based on these results, we conclude that the overexpression of PTTG may be required to initiate precancerous conditions but is not sufficient to induce ovarian tumorigenesis and may require another partner to initiate cellular transformation.


PLOS ONE | 2012

Host Gene Expression Signatures Discriminate between Ferrets Infected with Genetically Similar H1N1 Strains

Karl Ljungberg; Alexis McBrayer; Jeremy V. Camp; Yong Kyu Chu; Ronald Tapp; Diana L. Noah; Sheila Grimes; Mary Proctor; Peter Liljeström; Colleen B. Jonsson; Carl E.G. Bruder

Different respiratory viruses induce virus-specific gene expression in the host. Recent evidence, including those presented here, suggests that genetically related isolates of influenza virus induce strain-specific host gene regulation in several animal models. Here, we identified systemic strain-specific gene expression signatures in ferrets infected with pandemic influenza A/California/07/2009, A/Mexico/4482/2009 or seasonal influenza A/Brisbane/59/2007. Using uncorrelated shrunken centroid classification, we were able to accurately identify the infecting influenza strain with a combined gene expression profile of 10 selected genes, independent of the severity of disease. Another gene signature, consisting of 7 genes, could classify samples based on lung pathology. Furthermore, we identified a gene expression profile consisting of 31 probes that could classify samples based on both strain and severity of disease. Thus, we show that expression-based analysis of non-infected tissue enables distinction between genetically related influenza viruses as well as lung pathology. These results open for development of alternative tools for influenza diagnostics.


Experimental and Molecular Pathology | 2016

MmuPV1 infection and tumor development of T cell-deficient mice is prevented by passively transferred hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs)

Joongho Joh; Shin-je Ghim; Paula M. Chilton; John P. Sundberg; Jino Park; Sarah A. Wilcher; Mary Proctor; A. Bennett Jenson

Infection by mouse papillomavirus (PV), MmuPV1, of T cell-deficient, B6.Cg-Foxn1(nu)/J nude mice revealed that four, distinct squamous papilloma phenotypes developed simultaneously after infection of experimental mice. Papillomas appeared on the muzzle, vagina, and tail at or about day 42days post-inoculation. The dorsal skin developed papillomas and hair follicle tumors (trichoblastomas) as early as 26days after infection. Passive transfer of hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs) to T cell-deficient strains of mice prevented infection by virions of experimental mice. This study provides further evidence that T cell deficiency is critical for tumor formation by MmuPV1 infection.


OncoImmunology | 2017

Leukotriene B4-receptor-1 mediated host response shapes gut microbiota and controls colon tumor progression

Venkatakrishna R. Jala; Paramahamsa Maturu; Sobha R. Bodduluri; Elangovan Krishnan; Steven P. Mathis; Krishnaprasad Subbarao; Min Wang; Alfred B. Jenson; Mary Proctor; Eric C. Rouchka; Rob Knight; Bodduluri Haribabu

ABSTRACT Inflammation and infection are key promoters of colon cancer but the molecular interplay between these events is largely unknown. Mice deficient in leukotriene B4 receptor1 (BLT1) are protected in inflammatory disease models of arthritis, asthma and atherosclerosis. In this study, we show that BLT1−/− mice when bred onto a spontaneous tumor (ApcMin/+) model displayed an increase in the rate of intestinal tumor development and mortality. A paradoxical increase in inflammation in the tumors from the BLT1−/−ApcMin/+ mice is coincidental with defective host response to infection. Germ-free BLT1−/−ApcMin/+ mice are free from colon tumors that reappeared upon fecal transplantation. Analysis of microbiota showed defective host response in BLT1−/− ApcMin/+ mice reshapes the gut microbiota to promote colon tumor development. The BLT1−/−MyD88−/− double deficient mice are susceptible to lethal neonatal infections. Broad-spectrum antibiotic treatment eliminated neonatal lethality in BLT1−/−MyD88−/− mice and the BLT1−/−MyD88−/−ApcMin+ mice are protected from colon tumor development. These results identify a novel interplay between the Toll-like receptor mediated microbial sensing mechanisms and BLT1-mediated host response in the control of colon tumor development.


Experimental and Molecular Pathology | 2013

Epidemiological and phylogenetic analysis of institutional mouse parvoviruses

Joongho Joh; Mary Proctor; Janice L. Ditslear; William King Jr; John P. Sundberg; A. Bennett Jenson; Shin Je Ghim

Mouse parvoviruses (MPVs) are small, single-stranded, 5 kb DNA viruses that are subclinical and endemic in many laboratory mouse colonies. MPVs cause more distinctive deleterious effects in immune-compromised or genetically-engineered mice than immuno-competent mice. At the University of Louisville (U of L), there was an unexpected increase of MPV sero-positivity for MPV infections in mouse colonies between January 2006 and February 2007, resulting in strategic husbandry changes aimed at controlling MPV spread throughout the animal facility. To investigate these MPVs, VP2 genes of seven MPVs were cloned and sequenced from eight documented incidences by PCR technology. The mutations in these VP2 genes were compared to those found at the Genbank database (NCBI; http://www.ncbi.nlm.nih.gov) and an intra-institutional phylogenetic tree for MPV infections at U of L was constructed. We discovered that the seven MPV isolates were different from those in Genbank and were not identical to each other. These MPVs were designated MPV-UL1 to 7; none of them were minute virus of mice (MVMs). Four isolates could be classified as MPV1, one was classified as MPV2, and two were defined as novel types with less than 96% and 94% homology with existing MPV types. Considering that all seven isolates had mutations in their VP2 genes and no mutations were observed in VP2 genes of MPV during a four-month time period of incubation, we concluded that all seven MPVs isolated at U of L between 2006 and 2007 probably originated from different sources. Serological survey for MPV infections verified that each MPV outbreak was controlled without further contamination within the institution.

Collaboration


Dive into the Mary Proctor's collaboration.

Top Co-Authors

Avatar

Joongho Joh

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Shin-je Ghim

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry Yu

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Guardiola

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jino Park

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge