Mary Redmayne
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Redmayne.
Environmental Health | 2013
Mary Redmayne; Euan G. C. Smith; Michael J. Abramson
BackgroundThe exposure of young people to radiofrequency electromagnetic fields (RF-EMFs) has increased rapidly in recent years with their increased use of cellphones and use of cordless phones and WiFi. We sought to ascertain associations between New Zealand early-adolescents’ subjective well-being and self-reported use of, or exposure to, wireless telephone and internet technology.MethodsIn this cross-sectional survey, participants completed questionnaires in class about their cellphone and cordless phone use, their self-reported well-being, and possible confounding information such as whether they had had influenza recently or had a television in the bedroom. Parental questionnaires provided data on whether they had WiFi at home and cordless phone ownership and model. Data were analysed with Ordinal Logistic Regression adjusting for common confounders. Odds ratios (OR) and 95% confidence intervals were calculated.ResultsThe number and duration of cellphone and cordless phone calls were associated with increased risk of headaches (>6 cellphone calls over 10 minutes weekly, adjusted OR 2.4, CI 1.2-4.8; >15 minutes cordless use daily adjusted OR 1.74, CI 1.1-2.9)). Texting and extended use of wireless phones was related to having a painful ‘texting’ thumb). Using a wired cellphone headset was associated with tinnitus (adjusted OR 1.8, CI 1.0-3.3), while wireless headsets were associated with headache (adjusted OR 2.2, CI 1.1-4.5), feeling down/depressed (adjusted OR 2.0, CI 1.1-3.8), and waking in the night (adjusted OR 2.4, CI 1.2-4.8). Several cordless phone frequencies bands were related to tinnitus, feeling down/depressed and sleepiness at school, while the last of these was also related to modulation. Waking nightly was less likely for those with WiFi at home (adjusted OR 0.7, CI 0.4-0.99). Being woken at night by a cellphone was strongly related to tiredness at school (OR 3.49, CI 1.97-6.2).ConclusionsThere were more statistically significant associations (36%) than could be expected by chance (5%). Several were dose-dependent relationships. To safeguard young people’s well-being, we suggest limiting their use of cellphones and cordless phones to less than 15 minutes daily, and employing a speaker-phone device for longer daily use. We recommend parental measures are taken to prevent young people being woken by their cellphones.
Journal of Environmental Monitoring | 2010
Mary Redmayne; Imo Inyang; Christina Dimitriadis; Geza Benke; Michael J. Abramson
Cordless and mobile (cellular) telephone use has increased substantially in recent years causing concerns about possible health effects. This has led to much epidemiological research, but the usual focus is on mobile telephone radiofrequency (RF) exposure only despite cordless RF being very similar. Access to and use of cordless phones were included in the Mobile Radiofrequency Phone Exposed Users Study (MoRPhEUS) of 317 Year 7 students recruited from Melbourne, Australia. Participants completed an exposure questionnaire-87% had a cordless phone at home and 77% owned a mobile phone. There was a statistically significant positive relationship (r = 0.38, p < 0.01) between cordless and mobile phone use. Taken together, this increases total RF exposure and its ratio in high-to-low mobile users. Therefore, the design and analysis of future epidemiological telecommunication studies need to assess cordless phone exposure to accurately evaluate total RF telephone exposure effects.
Environmental Research | 2016
Chhavi Raj Bhatt; Arno Thielens; Baki Billah; Mary Redmayne; Michael J. Abramson; Malcolm Ross Sim; Roel Vermeulen; Luc Martens; Wout Joseph; Geza Benke
The purposes of this study were: i) to demonstrate the assessment of personal exposure from various RF-EMF sources across different microenvironments in Australia and Belgium, with two on-body calibrated exposimeters, in contrast to earlier studies which employed single, non-on-body calibrated exposimeters; ii) to systematically evaluate the performance of the exposimeters using (on-body) calibration and cross-talk measurements; and iii) to compare the exposure levels measured for one site in each of several selected microenvironments in the two countries. A human subject took part in an on-body calibration of the exposimeter in an anechoic chamber. The same subject collected data on personal exposures across 38 microenvironments (19 in each country) situated in urban, suburban and rural regions. Median personal RF-EMF exposures were estimated: i) of all microenvironments, and ii) across each microenvironment, in two countries. The exposures were then compared across similar microenvironments in two countries (17 in each country). The three highest median total exposure levels were: city center (4.33V/m), residential outdoor (urban) (0.75V/m), and a park (0.75V/m) [Australia]; and a tram station (1.95V/m), city center (0.95V/m), and a park (0.90V/m) [Belgium]. The exposures across nine microenvironments in Melbourne, Australia were lower than the exposures across corresponding microenvironments in Ghent, Belgium (p<0.05). The personal exposures across urban microenvironments were higher than those for rural or suburban microenvironments. Similarly, the exposure levels across outdoor microenvironments were higher than those for indoor microenvironments.
Australasian Physical & Engineering Sciences in Medicine | 2016
Chhavi Raj Bhatt; Mary Redmayne; Michael J. Abramson; Geza Benke
Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.
Environmental Health | 2013
Mary Redmayne
BackgroundCellphone and cordless phone use is very prevalent among early adolescents, but the extent and types of use is not well documented. This paper explores how, and to what extent, New Zealand adolescents are typically using and exposed to active cellphones and cordless phones, and considers implications of this in relation to brain tumour risk, with reference to current research findings.MethodsThis cross-sectional study recruited 373 Year 7 and 8 school students with a mean age of 12.3 years (range 10.3-13.7 years) from the Wellington region of New Zealand. Participants completed a questionnaire and measured their normal body-to-phone texting distances. Main exposure-metrics included self-reported time spent with an active cellphone close to the body, estimated time and number of calls on both phone types, estimated and actual extent of SMS text-messaging, cellphone functions used and people texted. Statistical analyses used Pearson Chi2 tests and Pearson’s correlation coefficient (r). Analyses were undertaken using SPSS version 19.0.ResultsBoth cellphones and cordless phones were used by approximately 90% of students. A third of participants had already used a cordless phone for ≥ 7 years. In 4 years from the survey to mid-2013, the cordless phone use of 6% of participants would equal that of the highest Interphone decile (≥ 1640 hours), at the surveyed rate of use. High cellphone use was related to cellphone location at night, being woken regularly, and being tired at school. More than a third of parents thought cellphones carried a moderate-to-high health risk for their child.ConclusionsWhile cellphones were very popular for entertainment and social interaction via texting, cordless phones were most popular for calls. If their use continued at the reported rate, many would be at increased risk of specific brain tumours by their mid-teens, based on findings of the Interphone and Hardell-group studies.
Journal of Toxicology and Environmental Health-part B-critical Reviews | 2014
Mary Redmayne; Olle Johansson
Myelin provides the electrical insulation for the central and peripheral nervous system and develops rapidly in the first years of life, but continues into mid-life or later. Myelin integrity is vital to healthy nervous system development and functioning. This review outlines the development of myelin through life, and then considers the evidence for an association between myelin integrity and exposure to low-intensity radiofrequency electromagnetic fields (RF-EMFs) typical in the modern world. In RF-EMF peer-reviewed literature examining relevant impacts such as myelin sheath, multiple sclerosis, and other myelin-related diseases, cellular examination was included. There are surprisingly little data available in each area, but considered together a picture begins to emerge in RF-EMF-exposed cases: (1) significant morphological lesions in the myelin sheath of rats; (2) a greater risk of multiple sclerosis in a study subgroup; (3) effects in proteins related to myelin production; and (4) physical symptoms in individuals with functional impairment electrohypersensitivity, many of which are the same as if myelin were affected by RF-EMF exposure, giving rise to symptoms of demyelination. In the latter, there are exceptions; headache is common only in electrohypersensitivity, while ataxia is typical of demyelination but infrequently found in the former group. Overall, evidence from in vivo and in vitro and epidemiological studies suggests an association between RF-EMF exposure and either myelin deterioration or a direct impact on neuronal conduction, which may account for many electrohypersensitivity symptoms. The most vulnerable are likely to be those in utero through to at least mid-teen years, as well as ill and elderly individuals.
Electromagnetic Biology and Medicine | 2016
Mary Redmayne
Abstract Radiofrequency electromagnetic field (RF-EMF) exposure regulations/guidelines generally only consider acute effects, and not chronic, low exposures. Concerns for children’s exposure are warranted due to the amazingly rapid uptake of many wireless devices by increasingly younger children. This review of policy and advice regarding children’s RF-EMF exposure draws material from a wide variety of sources focusing on the current situation. This is not a systematic review, but aims to provide a representative cross-section of policy and advisory responses within set boundaries. There are a wide variety of approaches which I have categorized and tabulated ranging from ICNIRP/IEEE guidelines and “no extra precautions needed” to precautionary or scientific much lower maxima and extensive advice to minimize RF-EMF exposure, ban advertising/sale to children, and add exposure information to packaging. Precautionary standards use what I term an exclusion principle. The wide range of policy approaches can be confusing for parents/carers of children. Some consensus among advisory organizations would be helpful acknowledging that, despite extensive research, the highly complex nature of both RF-EMF and the human body, and frequent technological updates, means simple assurance of long-term safety cannot be guaranteed. Therefore, minimum exposure of children to RF-EMF is recommended. This does not indicate need for alarm, but mirrors routine health-and-safety precautions. Simple steps are suggested. ICNIRP guidelines need to urgently publish how the head, torso, and limbs’ exposure limits were calculated and what safety margin was applied since this exposure, especially to the abdomen, is now dominant in many children.
Environment International | 2016
Chhavi Raj Bhatt; Arno Thielens; Mary Redmayne; Michael J. Abramson; Baki Billah; Malcolm Ross Sim; Roel Vermeulen; Luc Martens; Wout Joseph; Geza Benke
The aims of this study were to: i) measure personal exposure in the Global System for Mobile communications (GSM) 900MHz downlink (DL) frequency band with two systems of exposimeters, a personal distributed exposimeter (PDE) and a pair of ExpoM-RFs, ii) compare the GSM 900MHz DL exposures across various microenvironments in Australia and Belgium, and iii) evaluate the correlation between the PDE and ExpoM-RFs measurements. Personal exposure data were collected using the PDE and two ExpoM-RFs simultaneously across 34 microenvironments (17 each in Australia and Belgium) located in urban, suburban and rural areas. Summary statistics of the electric field strengths (V/m) were computed and compared across similar microenvironments in Australia and Belgium. The personal exposures across urban microenvironments were higher than those in the rural or suburban microenvironments. Likewise, the exposure levels across the outdoor were higher than those for indoor microenvironments. The five highest median exposure levels were: city centre (0.248V/m), bus (0.124V/m), railway station (0.105V/m), mountain/forest (rural) (0.057V/m), and train (0.055V/m) [Australia]; and bicycle (urban) (0.238V/m), tram station (0.238V/m), city centre (0.156V/m), residential outdoor (urban) (0.139V/m) and park (0.124V/m) [Belgium]. Exposures in the GSM900 MHz frequency band across most of the microenvironments in Australia were significantly lower than the exposures across the microenvironments in Belgium. Overall correlations between the PDE and the ExpoM-RFs measurements were high. The measured exposure levels were far below the general public reference levels recommended in the guidelines of the ICNIRP and the ARPANSA.
BMJ Open | 2012
Mary Redmayne; Euan G. C. Smith; Michael J. Abramson
Objective Self-reported recall data are often used in wireless phone epidemiological studies, which in turn are used to indicate relative risk of health outcomes from extended radiofrequency exposure. We sought to explain features commonly observed in wireless phone recall data and to improve analytical procedures. Setting Wellington Region, New Zealand. Participants Each of the 16 schools selected a year 7 and/or 8 class to participate, providing a representative regional sample based on socioeconomic school ratings, school type and urban/rural balance. There was an 85% participation rate (N=373). Main outcome measures Planned: the distribution of participants’ estimated extent of SMS-texting and cordless phone calls, and the extent of rounding to a final zero or five within the full set of recall data and within each order of magnitude. Unplanned: the distribution of the leading digits of these raw data, compared with that of billed data in each order of magnitude. Results The nature and extent of number-rounding, and the distribution of data across each order in recall data indicated a logarithmic (ratio-based) mental process for assigning values. Responses became less specific as the leading-digit increased from 1 to 9, and 69% of responses for weekly texts sent were rounded by participants to a single non-zero digit (eg, 2, 20 and 200). Conclusions Adolescents’ estimation of their cellphone use indicated that it was performed on a mental logarithmic scale. This is the first time this phenomenon has been observed in the estimation of recalled, as opposed to observed, numerical quantities. Our findings provide empirical justification for log-transforming data for analysis. We recommend the use of the geometric rather than arithmetic mean when a recalled numerical range is provided. A point of calibration may improve recall.
Journal of Exposure Science and Environmental Epidemiology | 2017
Chhavi Raj Bhatt; Mary Redmayne; Baki Billah; Michael J. Abramson; Geza Benke
The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.