Mary Wohltmann
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary Wohltmann.
American Journal of Pathology | 2008
Ibrahim Malik; John Turk; David J. Mancuso; Laura Montier; Mary Wohltmann; David F. Wozniak; Robert E. Schmidt; Richard W. Gross; Paul T. Kotzbauer
Mutations in the PLA2G6 gene, which encodes group VIA calcium-independent phospholipase A2 (iPLA(2)beta), were recently identified in patients with infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation. A pathological hallmark of these childhood neurodegenerative diseases is the presence of distinctive spheroids in distal axons that contain accumulated membranes. We used iPLA(2)beta-KO mice generated by homologous recombination to investigate neurodegenerative consequences of PLA2G6 mutations. iPLA(2)beta-KO mice developed age-dependent neurological impairment that was evident in rotarod, balance, and climbing tests by 13 months of age. The primary abnormality underlying this neurological impairment was the formation of spheroids containing tubulovesicular membranes remarkably similar to human INAD. Spheroids were strongly labeled with anti-ubiquitin antibodies. Accumulation of ubiquitinated protein in spheroids was evident in some brain regions as early as 4 months of age, and the onset of motor impairment correlated with a dramatic increase in ubiquitin-positive spheroids throughout the neuropil in nearly all brain regions. Furthermore accumulating ubiquitinated proteins were observed primarily in insoluble fractions of brain tissue, implicating protein aggregation in this pathogenic process. These results indicate that loss of iPLA(2)beta causes age-dependent impairment of axonal membrane homeostasis and protein degradation pathways, leading to age-dependent neurological impairment. iPLA(2)beta-KO mice will be useful for further studies of pathogenesis and experimental interventions in INAD and neurodegeneration with brain iron accumulation.
Journal of Biological Chemistry | 2006
Shunzhong Bao; Haowei Song; Mary Wohltmann; Sasanka Ramanadham; Wu Jin; Alan Bohrer; John Turk
Studies involving pharmacologic or molecular biologic manipulation of Group VIA phospholipase A2 (iPLA2β) activity in pancreatic islets and insulinoma cells suggest that iPLA2β participates in insulin secretion. It has also been suggested that iPLA2β is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels and arachidonate incorporation into phosphatidylcholine (PC). We have generated iPLA2β-null mice by homologous recombination and have reported that they exhibit reduced male fertility and defective motility of spermatozoa. Here we report that pancreatic islets from iPLA2β-null mice have impaired insulin secretory responses to d-glucose and forskolin. Electrospray ionization mass spectrometric analyses indicate that the abundance of arachidonate-containing PC species of islets, brain, and other tissues from iPLA2β-null mice is virtually identical to that of wild-type mice, and no iPLA2β mRNA was observed in any tissue from iPLA2β-null mice at any age. Despite the insulin secretory abnormalities of isolated islets, fasting and fed blood glucose concentrations of iPLA2β-null and wild-type mice are essentially identical under normal circumstances, but iPLA2β-null mice develop more severe hyperglycemia than wild-type mice after administration of multiple low doses of the β-cell toxin streptozotocin, suggesting an impaired islet secretory reserve. A high fat diet also induces more severe glucose intolerance in iPLA2β-null mice than in wild-type mice, but PLA2β-null mice have greater responsiveness to exogenous insulin than do wild-type mice fed a high fat diet. These and previous findings thus indicate that iPLA2β-null mice exhibit phenotypic abnormalities in pancreatic islets in addition to testes and macrophages.
Journal of Biological Chemistry | 2005
Jason M. Moran; R. Mark L. Buller; Jane McHowat; John Turk; Mary Wohltmann; Richard W. Gross; John A. Corbett
Recent evidence supports a regulatory role for the calcium-independent phospholipase A2 (iPLA2) in the antiviral response of inducible nitric-oxide synthase (iNOS) expression by macrophages. Because two mammalian isoforms of iPLA2 (iPLA2β and iPLA2 γ) have been cloned and characterized, the aim of this study was to identify the specific isoform(s) in macrophages that regulates the expression of iNOS in response to virus infection. Bromoenol lactone (BEL), a suicide substrate inhibitor of iPLA2, inhibits the activity of both isoforms at low micromolar concentrations. However, the R- and S-enantiomers of BEL display ∼10-fold greater potency for inhibition of the enzymatic activity of iPLA2γ and iPLA2β, respectively. In this study, we show that the iPLA2β-selective (S)-BEL inhibits encephalomyocarditis virus (EMCV)-induced iNOS expression, nitric oxide production, and iPLA2 enzymatic activity in macrophages in a concentration-related manner that closely resembles the inhibitory properties of racemic BEL. cAMP response element-binding protein (CREB) is one downstream target of iPLA2 that is required for the transcriptional activation of iNOS in response to virus infection, and consistent with the effects of BEL enantiomers on iNOS expression, (S)-BEL more effectively inhibits EMCV-induced CREB phosphorylation than (R)-BEL in macrophages. Using macrophages isolated from iPLA2β-null mice, virus infection fails to stimulate iNOS mRNA accumulation and protein expression, thus providing genetic evidence that iPLA2β is required for EMCV-induced iNOS expression. These findings provide evidence for a signaling role for iPLA2β in virus-induced iNOS expression by macrophages.
American Journal of Pathology | 2008
Sasanka Ramanadham; Kevin E. Yarasheski; Matthew J. Silva; Mary Wohltmann; Deborah V. Novack; Blaine A. Christiansen; Xiaolin Tu; Sheng Zhang; Xiaoyong Lei; John Turk
Phospholipases A(2) (PLA(2)) hydrolyze the sn-2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA(2) (iPLA(2)beta), which participates in a variety of signaling events; iPLA(2)beta mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-gamma and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA(2)beta-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA(2)beta causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA(2)beta in bone formation.
Journal of Biological Chemistry | 2007
Shunzhong Bao; Yankun Li; Xiaoyong Lei; Mary Wohltmann; Wu Jin; Alan Bohrer; Clay F. Semenkovich; Sasanka Ramanadham; Ira Tabas; John Turk
Mouse macrophages undergo ER stress and apoptosis upon free cholesterol loading (FCL). We recently generated iPLA2β-null mice, and here we demonstrate that iPLA2β-null macrophages have reduced sensitivity to FCL-induced apoptosis, although they and wild-type (WT) cells exhibit similar increases in the transcriptional regulator CHOP. iPLA2β-null macrophages are also less sensitive to apoptosis induced by the sarcoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin and the scavenger receptor A ligand fucoidan, and restoring iPLA2βexpression with recombinant adenovirus increases apoptosis toward WT levels. WT and iPLA2β-null macrophages incorporate [3H]arachidonic acid ([3H]AA]) into glycerophosphocholine lipids equally rapidly and exhibit identical zymosan-induced, cPLA2α-catalyzed [3H]AA release. In contrast, although WT macrophages exhibit robust [3H]AA release upon FCL, this is attenuated in iPLA2β-null macrophages and increases toward WT levels upon restoring iPLA2β expression. Recent reports indicate that iPLA2β modulates mitochondrial cytochrome c release, and we find that thapsigargin and fucoidan induce mitochondrial phospholipid loss and cytochrome c release into WT macrophage cytosol and that these events are blunted in iPLA2β-null cells. Immunoblotting studies indicate that iPLA2β associates with mitochondria in macrophages subjected to ER stress. AA incorporation into glycerophosphocholine lipids is unimpaired in iPLA2β-null macrophages upon electrospray ionization-tandem mass spectrometry analyses, and their complex lipid composition is similar to WT cells. These findings suggest that iPLA2β participates in ER stress-induced macrophage apoptosis caused by FCL or thapsigargin but that deletion of iPLA2β does not impair macrophage arachidonate incorporation or phospholipid composition.
Lipids | 2001
Zhongmin Ma; Alan Bohrer; Mary Wohltmann; Sasanka Ramanadham; Fong-Fu Hsu; John Turk
A cytosolic 84 kDa Group VIA phospholipase A2 (iPLA2β) that does not require Ca2+ for catalysis was cloned from Chinese hamster ovary (CHO) cells, murine P388D1 cells, pancreatic islet β-cells, and other sources. Proposed iPLA2β functions include participation in phosphatidylcholine (PC) homeostasis by degrading excess PC generated in CHO cells that overexpress CTP:phosphocholine cytidylyltransferase (CT), which catalyzes the rate-limiting step in PC biosynthesis; participation in biosynthesis of arachidonate-containing PC species in P388D1 cells by generating lysophosphatidylcholine (IPC) acceptors for arachidonate incorporation; and participation in signaling events in insulin secretion from islet β-cells. To further examine iPLA2β functions in β-cells, we prepared stably transfected INS-1 insulinoma cell lines that overexpress iPLA2β activity eightfold compared to parental INS-1 cells or to INS-1 cells transfected with an empty retroviral vector that did not contain iPIA2β cDNA. The iPLA2β-overexpressing cells exhibit a twofold increase in CT activity compared to parental cells but little change in rates of [3H] choline incorporation into or disappearance from PC. Electrospray ionization (ESI) tandem mass spectrometric measurements indicate that iPLA2β-overexpressing cells have 1.5-fold higher LPC levels than parental INS-1 cells but do not exhibit increased rates of [3H]arachidonate incorporation into phospholipids, and incorporation is unaffected by a bromoenol lactone (BEL) suicide substrate inhibitor of iPLA2β. The rate of appearance of arachidonate-containing phosphatidylethanolamine species visualized by ESI mass spectrometry is also similar in iPLA2β-overexpressing and parental INS-1 cells incubated with supplemental arachidonic acid, and this process is unaffected by BEL. Compared to parental INS-1 cells, iPLA2β-overexpressing cells proliferate more rapidly and exhibit amplified insulin secretory responses to a protein kinase C-activating phorbol ester, glucose, and a cAMP analog. These findings suggest that iPLA2β plays a signaling role in β-cells that differs from housekeeping functions in PC biosynthesis and degradation in P388D1 and CHO cells.
Journal of Lipid Research | 2010
Mireille Basselin; Angelo O. Rosa; Epolia Ramadan; Yewon Cheon; Lisa Chang; Mei Chen; Deanna Greenstein; Mary Wohltmann; John Turk; Stanley I. Rapoport
Ca2+-independent phospholipase A2β (iPLA2β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA2β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M1,3,5 receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA2β−/−, iPLA2β+/−, and iPLA2β+/+ mice, and [1-14C]DHA was infused intravenously. DHA incorporation coefficients k* and rates Jin, representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA2β−/− or iPLA2β+/− compared with iPLA2β+/+ mice showed widespread and significant baseline reductions in k* and Jin for DHA. Arecoline increased both parameters in brain regions of iPLA2β+/+ mice but quantitatively less so in iPLA2β−/− and iPLA2β+/− mice. Consistent with iPLA2β’s reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA2β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M1,3,5 receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.
Lipids | 2000
Fong-Fu Hsu; Alan Bohrer; Mary Wohltmann; Sasanka Ramanadham; Zhongmin Ma; Kevin E. Yarasheski; John Turk
The Zucker diabetic fatty (ZDF) rat is a genetic model of type II diabetes mellitus in which males homozygous for nonfunctional leptin receptors (fa/fa) develop obesity, hyperlipidemia, and hyperglycemia, but rats homozygous for normal receptors (+/+) remain lean and normoglycemic. Insulin resistance develops in young fa/fa rats and is followed by evolution of an insulin secretory defect that triggers hyperglycemia. Because insulin secretion and insulin sensitivity are affected by membrane phospholipid fatty acid composition, we have determined whether metabolic abnormalities in fa/fa rats are associated with changes in tissue phospholipids. Electrospray ionization mass spectrometric analyses of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) molecular species from tissues of prediabetic (6 wk of age) and overtly diabetic (12 wk) fa/fa rats and from +/+ rats of the same ages indicate that arachidonate-containing species from heart, aorta, and liver of prediabetic fa/fa rats made a smaller contribution to GPC total ion current than was the case for +/+ rats. There was a correspondingly larger contribution from species with sn-2 oleate or linoleate substituents in fa/fa heart and aorta. The relative contributions of arachidonate-containing GPC species increased in these tissues as fa/fa rats aged and were equal to or greater than those for +/+ rats by 12 wk. For heart and aorta, relative contributions from GPE species with sn-2 arachidonate or docosahexaenoate substituents to the total ion current increased and those from species with sn-2 oleate or linoleate substituents fell as fa/fa rats aged, but these tissue lipid profiles changed little with age in +/+ rats. GPC and GPE profiles for brain, kidney, sciatic nerve, and red blood cells were similar among fa/fa and +/+ rats at 6 and 12 wk or age, and pancreatic islets from fa/fa and +/+ rats exhibited similar GPC and GPE profiles at 12 wk of age. Under-representation of arachidonate-containing GPC and GPE species in some fa/fa rat tissues at 6 wk could contribute to insulin resistance, but depletion of islet arachidonate-containing GPC and GPE species is unlikely to explain the evolution of the insulin secretory defect that is well-developed by 12 wk of age.
Biochimica et Biophysica Acta | 2012
Yewon Cheon; Hyung-Wook Kim; Miki Igarashi; Hiren R. Modi; Lisa Chang; Kaizong Ma; Deanna Greenstein; Mary Wohltmann; John Turk; Stanley I. Rapoport; Ameer Y. Taha
Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA(2)β(+/+) mice, iPLA(2)β(-/-) mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA(2)β(-/-) mice, brain levels of iPLA(2)β mRNA, protein, and activity were decreased, as was the iPLA(2)γ (Group VIB PLA(2)) mRNA level, while levels of secretory sPLA(2)-V mRNA, protein, and activity and cytosolic cPLA(2)-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA(2)β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.
American Journal of Physiology-endocrinology and Metabolism | 2010
Haowei Song; Mary Wohltmann; Shunzhong Bao; Jack H. Ladenson; Clay F. Semenkovich; John Turk
Phospholipases A(2) (PLA(2)) play important roles in metabolic processes, and the Group VI PLA(2) family is comprised of intracellular enzymes that do not require Ca(2+) for catalysis. Mice deficient in Group VIA PLA(2) (iPLA(2)beta) develop more severe glucose intolerance than wild-type (WT) mice in response to dietary stress. Group VIB PLA(2) (iPLA(2)gamma) is a related enzyme distributed in membranous organelles, including mitochondria, and iPLA(2)gamma knockout (KO) mice exhibit altered mitochondrial morphology and function. We have compared metabolic responses of iPLA(2)gamma-KO and WT mice fed a Western diet (WD) with a high fat content. We find that KO mice are resistant to WD-induced increases in body weight and adiposity and in blood levels of cholesterol, glucose, and insulin, even though WT and KO mice exhibit similar food consumption and dietary fat digestion and absorption. KO mice are also relatively resistant to WD-induced insulin resistance, glucose intolerance, and altered patterns of fat vs. carbohydrate fuel utilization. KO skeletal muscle exhibits impaired mitochondrial beta-oxidation of fatty acids, as reflected by accumulation of larger amounts of long-chain acylcarnitine (LCAC) species in KO muscle and liver compared with WT in response to WD feeding. This is associated with increased urinary excretion of LCAC and much reduced deposition of triacylglycerols in liver by WD-fed KO compared with WT mice. The iPLA(2)gamma-deficient genotype thus results in a phenotype characterized by impaired mitochondrial oxidation of fatty acids and relative resistance to the metabolic abnormalities induced by WD.