Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maryam Ehteshami is active.

Publication


Featured researches published by Maryam Ehteshami.


Antiviral Research | 2014

Chutes and ladders in hepatitis C nucleoside drug development

Steven J. Coats; Ethel C. Garnier-Amblard; Franck Amblard; Maryam Ehteshami; Sheida Amiralaei; Hongwang Zhang; Longhu Zhou; Sebastien Boucle; Xiao Lu; Lavanya Bondada; Jadd R. Shelton; Hao Li; Peng Liu; Chengwei Li; Jong Hyun Cho; Satish N. Chavre; Shaoman Zhou; Judy Mathew; Raymond F. Schinazi

Chutes and Ladders is an exciting up-and-down-again game in which players race to be the first to the top of the board. Along the way, they will find ladders to help them advance, and chutes that will cause them to move backwards. The development of nucleoside analogs for clinical treatment of hepatitis C presents a similar scenario in which taking shortcuts may help quickly advance a program, but there is always a tremendous risk of being sent backwards as one competes for the finish line. In recent years the treatment options for chronic hepatitis C virus (HCV) infection have expand due to the development of a replicon based in vitro evaluation system, allowing for the identification of multiple drugable viral targets along with a concerted and substantial drug discovery effort. Three major drug targets have reached clinical study for chronic HCV infection: the NS3/4A serine protease, the large phosphoprotein NS5A, and the NS5B RNA-dependent RNA polymerase. Recently, two oral HCV protease inhibitors were approved by the FDA and were the first direct acting anti-HCV agents to result from the substantial research in this area. There are currently many new chemical entities from several different target classes that are being evaluated worldwide in clinical trials for their effectiveness at achieving a sustained virologic response (SVR) (Pham et al., 2004; Radkowski et al., 2005). Clearly the goal is to develop therapies leading to a cure that are safe, widely accessible and available, and effective against all HCV genotypes (GT), and all stages of the disease. Nucleoside analogs that target the HCV NS5B polymerase that have reached human clinical trials is the focus of this review as they have demonstrated significant advantages in the clinic with broader activity against the various HCV GT and a higher barrier to the development of resistant viruses when compared to all other classes of HCV inhibitors.


Infection and Drug Resistance | 2014

Approaches to hepatitis C treatment and cure using NS5A inhibitors.

James J. Kohler; James H. Nettles; Franck Amblard; Selwyn J. Hurwitz; Leda Bassit; Richard A. Stanton; Maryam Ehteshami; Raymond F. Schinazi

Recent progress in the understanding of hepatitis C virus (HCV) biology and the availability of in vitro models to study its replication have facilitated the development of direct-acting antiviral agents (DAAs) that target specific steps in the viral replication cycle. Currently, there are three major classes of DAA in clinical development: NS3/4A protease inhibitors, NS5B polymerase inhibitors, and NS5A directed inhibitors. Several compounds thought to bind directly with NS5A are now in various clinical trial phases, including the most advanced, daclatasvir (BMS-790052), ledipasvir (GS-5885), and ABT-267. While many NS5A-targeted compounds demonstrate picomolar potency, the exact mechanism(s) of their action is still unclear. In the clinic, NS5A HCV inhibitors show promise as important components in DAA regimens and have multifunctionality. In addition to inhibiting viral replication, they may synergize with other DAAs, possibly by modulating different viral proteins, to help suppress the emergence of resistant viruses. Structure-based models have identified target interaction domains and spatial interactions that explain drug resistance for mutations at specific positions (eg, residues 93 and 31) within NS5A and potential binding partners. This review provides, insights into the unique complexity of NS5A as a central platform for multiple viral/host protein interactions, and possible mechanism(s) for the NS5A inhibitors currently undergoing clinical trials that target this nonstructural viral protein.


Clinics in Liver Disease | 2016

Toward Elimination of Hepatitis B Virus Using Novel Drugs, Approaches, and Combined Modalities

Sebastien Boucle; Leda Bassit; Maryam Ehteshami; Raymond F. Schinazi

Hepatitis B virus (HBV) causes significant morbidity and mortality worldwide. The majority of chronically infected individuals do not achieve a functional and complete cure. Treated persons who achieve a long-term sustained virologic response (undetectable HBV DNA), are still at high risk of developing morbidity and mortality from liver complications. This review focuses on novel, mechanistically diverse anti-HBV therapeutic strategies currently in development or in clinical evaluation, and highlights new combination strategies that may contribute to full elimination of HBV DNA and covalently closed circular DNA from the infected liver, leading to a complete cure of chronic hepatitis B.


Antimicrobial Agents and Chemotherapy | 2016

Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094

Maryam Ehteshami; Sijia Tao; Tugba Ozturk; Longhu Zhou; Jong Hyun Cho; Hongwang Zhang; Sheida Amiralaei; Jadd R. Shelton; Xiao Lu; Robert A. Domaoal; Richard A. Stanton; Justin E. Suesserman; Biing Lin; Sam S. Lee; Franck Amblard; Tony Whitaker; Steven J. Coats; Raymond F. Schinazi

ABSTRACT Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2′-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2′-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2′-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo. Finally, we found that although both 2′-C-methyl-GTP and 2′-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2′-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2′-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites.


Antimicrobial Agents and Chemotherapy | 2017

Characterization of β-D-N4-hydroxycytidine as a Novel Inhibitor of Chikungunya Virus.

Maryam Ehteshami; Sijia Tao; Keivan Zandi; Hui-Mien Hsiao; Yong Jiang; Emily T. Hammond; Franck Amblard; Olivia Ollinger Russell; Andres Merits; Raymond F. Schinazi

ABSTRACT Chikungunya virus (CHIKV) represents a reemerging global threat to human health. Recent outbreaks across Asia, Europe, Africa, and the Caribbean have prompted renewed scientific interest in this mosquito-borne alphavirus. There are currently no vaccines against CHIKV, and treatment has been limited to nonspecific antiviral agents, with suboptimal outcomes. Herein, we have identified β-d-N4-hydroxycytidine (NHC) as a novel inhibitor of CHIKV. NHC behaves as a pyrimidine ribonucleoside and selectively inhibits CHIKV replication in cell culture.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery, characterization, and lead optimization of 7-azaindole non-nucleoside HIV-1 reverse transcriptase inhibitors

Richard A. Stanton; Xiao Lu; Mervi Detorio; Catherine Montero; Emily T. Hammond; Maryam Ehteshami; Robert A. Domaoal; James H. Nettles; Michel Feraud; Raymond F. Schinazi

A library of 585 compounds built off a 7-azaindole core was evaluated for anti-HIV-1 activity, and ten hits emerged with submicromolar potency and therapeutic index >100. Of these, three were identified as non-nucleoside reverse transcriptase (RT) inhibitors and were assayed against relevant resistant mutants. Lead compound 8 inhibited RT with submicromolar potency (IC50=0.73μM) and also maintained some activity against the clinically important RT mutants K103N and Y181C (IC50=9.2, 3.5μM) in cell-free assays. Free energy perturbation guided lead optimization resulted in the development of a compound with a two-fold increase in potency against RT (IC50=0.36μM). These data highlight the discovery of a unique scaffold with the potential to move forward as next-generation anti-HIV-1 agents.


Antimicrobial Agents and Chemotherapy | 2017

Nucleotide Substrate Specificity of Anti-Hepatitis C Virus Nucleoside Analogs for Human Mitochondrial RNA Polymerase

Maryam Ehteshami; Longhu Zhou; Sheida Amiralaei; Jadd R. Shelton; Jong Hyun Cho; Hongwang Zhang; Hao Li; Xiao Lu; Tugba Ozturk; Richard A. Stanton; Franck Amblard; Tamara R. McBrayer; Steven J. Coats; Raymond F. Schinazi

ABSTRACT Nucleoside analog inhibitors (NAIs) are an important class of antiviral agents. Although highly effective, some NAIs with activity against hepatitis C virus (HCV) can cause toxicity, presumably due to off-target inhibition of host mitochondrial RNA polymerase (POLRMT). The in vitro nucleotide substrate specificity of POLRMT was studied in order to explore structure-activity relationships that can facilitate the identification of nontoxic NAIs. These findings have important implications for the development of all anti-RNA virus NAIs.


Liver International | 2018

Towards HBV curative therapies

Raymond F. Schinazi; Maryam Ehteshami; Leda Bassit; Tarik Asselah

Tremendous progress has been made over the last 2 decades to discover and develop approaches to control hepatitis B virus (HBV) infections and to prevent the development of hepatocellular carcinoma using various interferons and small molecules as antiviral agents. However, none of these agents have significant impact on eliminating HBV from infected cells. Currently the emphasis is on silencing or eliminating cccDNA, which could lead to a cure for HBV. Various approaches are being developed including the development of capsid effectors, CRISPR/Cas9, TALENS, siRNA, entry and secretion inhibitors, as well as immunological approaches. It is very likely that a combination of these modalities will need to be employed to successfully eliminate HBV or prevent virus rebound on discontinuation of therapy. In the next 5 years clinical data will emerge which will provide insight on the safety and feasibility of these approaches and if they can be applied to eradicate HBV infections globally. In this review, we summarize current treatments and we highlight and examine recent therapeutic strategies that are currently being evaluated at the preclinical and clinical stage.


Archive | 2017

Resistance Mechanisms to HIV-1 Nucleoside Reverse Transcriptase Inhibitors

Brian D. Herman; Robert A. Domaoal; Maryam Ehteshami; Raymond F. Schinazi

HIV-1 reverse transcriptase (RT) is essential for viral replication and is a major target for antiretroviral therapy. There are 26 FDA-approved drugs for the treatment of HIV, 12 are designed to target RT and some are the most widely prescribed agents especially as fixed-dose combinations. By inhibiting the enzyme required for copying the viral genome, viral replication can be stopped. RT is responsible for synthesizing double-stranded DNA from the viral single-stranded RNA genome during the process of reverse transcription. It is a DNA polymerase that can use RNA or DNA as a template and it also has RNase H activity, which cleaves RNA annealed to DNA [1–3].


Journal of Medicinal Chemistry | 2015

β-d-2′-C-Methyl-2,6-diaminopurine Ribonucleoside Phosphoramidates are Potent and Selective Inhibitors of Hepatitis C Virus (HCV) and Are Bioconverted Intracellularly to Bioactive 2,6-Diaminopurine and Guanosine 5′-Triphosphate Forms

Longhu Zhou; Hongwang Zhang; Sijia Tao; Leda Bassit; Tony Whitaker; Tamara R. McBrayer; Maryam Ehteshami; Sheida Amiralaei; Ugo Pradere; Jong Hyun Cho; Franck Amblard; Drew R. Bobeck; Mervi Detorio; Steven J. Coats; Raymond F. Schinazi

Collaboration


Dive into the Maryam Ehteshami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge