Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maryann E. Martone is active.

Publication


Featured researches published by Maryann E. Martone.


The Journal of Neuroscience | 2002

Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains

Eric A. Bushong; Maryann E. Martone; Ying Jones; Mark H. Ellisman

Protoplasmic astrocytes are increasingly thought to interact extensively with neuronal elements in the brain and to influence their activity. Recent reports have also begun to suggest that physiologically, and perhaps functionally, diverse forms of these cells may be present in the CNS. Our current understanding of astrocyte form and distribution is based predominately on studies that used the astrocytic marker glial fibrillary acidic protein (GFAP) and on studies using metal-impregnation techniques. The prevalent opinion, based on studies using these methods, is that astrocytic processes overlap extensively and primarily share the underlying neuropil. However, both of these techniques have serious shortcomings for visualizing the interactions among these structurally complex cells. In the present study, intracellular injection combined with immunohistochemistry for GFAP show that GFAP delineates only ∼15% of the total volume of the astrocyte. As a result, GFAP-based images have led to incorrect conclusions regarding the interaction of processes of neighboring astrocytes. To investigate these interactions in detail, groups of adjacent protoplasmic astrocytes in the CA1 stratum radiatum were injected with fluorescent intracellular tracers of distinctive emissive wavelengths and analyzed using three-dimensional (3D) confocal analysis and electron microscopy. Our findings show that protoplasmic astrocytes establish primarily exclusive territories. The knowledge of how the complex morphology of protoplasmic astrocytes affects their 3D relationships with other astrocytes, oligodendroglia, neurons, and vasculature of the brain should have important implications for our understanding of nervous system function.


Scientific Data | 2016

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson; Michel Dumontier; IJsbrand Jan Aalbersberg; Gabrielle Appleton; Myles Axton; Arie Baak; Niklas Blomberg; Jan Willem Boiten; Luiz Olavo Bonino da Silva Santos; Philip E. Bourne; Jildau Bouwman; Anthony J. Brookes; Timothy W.I. Clark; Mercè Crosas; Ingrid Dillo; Olivier Dumon; Scott C Edmunds; Chris T. Evelo; Richard Finkers; Alejandra Gonzalez-Beltran; Alasdair J. G. Gray; Paul T. Groth; Carole A. Goble; Jeffrey S. Grethe; Jaap Heringa; Peter A. C. 't Hoen; Rob W. W. Hooft; Tobias Kuhn; Ruben Kok; Joost N. Kok

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.


Cell | 1999

Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy

Susumu Minamisawa; Masahiko Hoshijima; Guoxiang Chu; Christopher A. Ward; Konrad Frank; Yusu Gu; Maryann E. Martone; Yibin Wang; John Ross; Evangelia G. Kranias; Wayne R. Giles; Kenneth R. Chien

Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) inhibitor, phospholamban, rescued the spectrum of phenotypes that resemble human heart failure. Inhibition of phospholamban-SERCA2a interaction via in vivo expression of a phospholamban point mutant dominantly activated the contractility of ventricular muscle cells. Thus, interfering with phospholamban-SERCA2a interaction may provide a novel therapeutic approach for preventing the progression of dilated cardiomyopathy.


Nature Medicine | 1999

Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy

Cornel Badorff; Gil-Hwan Lee; Barry J. Lamphear; Maryann E. Martone; Kevin P. Campbell; Robert E. Rhoads; Kirk U. Knowlton

Enteroviruses such as Coxsackievirus B3 can cause dilated cardiomyopathy, but the mechanism of this pathology is unknown. Mutations in cytoskeletal proteins such as dystrophin cause hereditary dilated cardiomyopathy, but it is unclear if similar mechanisms underlie acquired forms of heart failure. We demonstrate here that purified Coxsackievirus protease 2A cleaves dystrophin in vitro as predicted by computer analysis. Dystrophin is also cleaved during Coxsackievirus infection of cultured myocytes and in infected mouse hearts, leading to impaired dystrophin function. In vivo, dystrophin and the dystrophin-associated glycoproteins α-sarcoglycan and β-dystroglycan are morphologically disrupted in infected myocytes. We suggest a molecular mechanism through which enteroviral infection contributes to the pathogenesis of acquired forms of dilated cardiomyopathy.


Nature Neuroscience | 2007

Synapse formation on neurons born in the adult hippocampus

Nicolas Toni; E. Matthew Teng; Eric A. Bushong; James B. Aimone; Chunmei Zhao; Antonella Consiglio; Henriette van Praag; Maryann E. Martone; Mark H. Ellisman; Fred H. Gage

Although new and functional neurons are produced in the adult brain, little is known about how they integrate into mature networks. Here we explored the mechanisms of synaptogenesis on neurons born in the adult mouse hippocampus using confocal microscopy, electron microscopy and live imaging. We report that new neurons, similar to mature granule neurons, were contacted by axosomatic, axodendritic and axospinous synapses. Consistent with their putative role in synaptogenesis, dendritic filopodia were more abundant during the early stages of maturation and, when analyzed in three dimensions, the tips of all filopodia were found within 200 nm of preexisting boutons that already synapsed on other neurons. Furthermore, dendritic spines primarily synapsed on multiple-synapse boutons, suggesting that initial contacts were preferentially made with preexisting boutons already involved in a synapse. The connectivity of new neurons continued to change until at least 2 months, long after the formation of the first dendritic protrusions.


Neuron | 2002

Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation

Stephan Miller; Masahiro Yasuda; Jennifer K. Coats; Ying Jones; Maryann E. Martone; Mark Mayford

Local protein translation in dendrites could be a means for delivering synaptic proteins to their sites of action, perhaps in a spatially regulated fashion that could contribute to plasticity. To directly test the functional role of dendritic translation of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) in vivo, we mutated the endogenous gene to disrupt the dendritic localization signal in the mRNA. In this mutant mouse, the protein-coding region of CaMKIIalpha is intact, but mRNA is restricted to the soma. Removal of dendritic mRNA produced a dramatic reduction of CaMKIIalpha in postsynaptic densities (PSDs), a reduction in late-phase long-term potentiation (LTP), and impairments in spatial memory, associative fear conditioning, and object recognition memory. These results demonstrate that local translation is important for synaptic delivery of the kinase and that local translation contributes to synaptic and behavioral plasticity.


Nature Methods | 2012

Biological imaging software tools

Kevin W. Eliceiri; Michael R Berthold; Ilya G. Goldberg; Luis Ibáñez; B. S. Manjunath; Maryann E. Martone; Robert F. Murphy; Hanchuan Peng; Anne L. Plant; Badrinath Roysam; Nico Stuurman; Jason R. Swedlow; Pavel Tomancak; Anne E. Carpenter

Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the inherent challenges and the overall status of available software for bioimage informatics, focusing on open-source options.


Journal of Cerebral Blood Flow and Metabolism | 1999

Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and Activation of caspase-like proteases.

Yi-Bing Ouyang; Ying Tan; M. Comb; Chun-Li Liu; Maryann E. Martone; Bo K. Siesjö; Bing-Ren Hu

Release of cytochrome c (cyt c) into cytoplasm initiates caspase-mediated apoptosis, whereas activation of Akt kinase by phosphorylation at serine-473 prevents apoptosis in several cell systems. To investigate cell death and cell survival pathways, the authors studied release of cyt c, activation of caspase, and changes in Akt phosphorylation in rat brains subjected to 15 minutes of ischemia followed by varying periods of reperfusion. The authors found by electron microscopic study that a portion of mitochondria was swollen and structurally altered, whereas the cell membrane and nuclei were intact in hippocampal CA1 neurons after 36 hours of reperfusion. In some neurons, the pattern of immunostaining for cyt c changed from a punctuate pattern, likely representing mitochondria, to a more diffuse cytoplasmic localization at 36 and 48 hours of reperfusion as examined by laser-scanning confocal microscopic study. Western blot analysis showed that cyt c was increased in the cytosolic fraction in the hippocampus after 36 and 48 hours of reperfusion. Consistently, caspase-3–like activity was increased in these hippocampal samples. As demonstrated by Western blot using phosphospecific Akt antibody, phosphorylation of Akt at serine-473 in the hippocampal region was highly increased during the first 24 hours but not at 48 hours of reperfusion. The authors conclude that transient cerebral ischemia activates both cell death and cell survival pathways after ischemia. The activation of Akt during the first 24 hours conceivably may be one of the factors responsible for the delay in neuronal death after global ischemia.


Journal of Cell Biology | 2001

Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy

Qiang Zhou; Po-Hsien Chu; Chenqun Huang; Ching-Feng Cheng; Maryann E. Martone; Gudrun Knöll; G. Diane Shelton; Sylvia M. Evans; Ju Chen

Cypher is a member of a recently emerging family of proteins containing a PDZ domain at their NH2 terminus and one or three LIM domains at their COOH terminus. Cypher knockout mice display a severe form of congenital myopathy and die postnatally from functional failure in multiple striated muscles. Examination of striated muscle from the mutants revealed that Cypher is not required for sarcomerogenesis or Z-line assembly, but rather is required for maintenance of the Z-line during muscle function. In vitro studies demonstrated that individual domains within Cypher localize independently to the Z-line via interactions with α-actinin or other Z-line components. These results suggest that Cypher functions as a linker-strut to maintain cytoskeletal structure during contraction.


International Journal of Developmental Neuroscience | 2004

Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development.

Eric A. Bushong; Maryann E. Martone; Mark H. Ellisman

Mature protoplasmic astrocytes exhibit an extremely dense ramification of fine processes, yielding a ‘spongiform’ morphology. This complex morphology enables protoplasmic astrocytes to maintain intimate relationships with many elements of the brain parenchyma, most notably synapses. Recently, it has been demonstrated that astrocytes establish individual cellular‐level domains within the neuropil, with limited overlap occurring between the extents of neighboring astrocytes. The highly ramified nature of protoplasmic astrocytes is closely associated with their ability to create such domains. This study was an attempt to characterize the development of spongiform processes and the establishment of astrocyte domains. A combination of immunolabeling for the astrocyte‐specific markers glial fibrillary acidic protein and S100β with intracellular dye labeling in fixed tissue slices allowed for the identification of immature astrocytes and the elucidation of their complete, well‐preserved morphologies. We find that during the first two postnatal weeks astrocytes extend stringy, filopodial processes. Fine, spongiform processes appear during the third week. Protoplasmic astrocytes are quite heterogeneous in morphology at 1‐week postnatum, but there is a remarkable consistency in morphology by 2 weeks of age. Finally, protoplasmic astrocytes initially extend long, overlapping processes during the first two postnatal weeks. The subsequent elaboration of spongiform processes results in the development of boundaries between neighboring astrocyte domains. Stray processes that encroach on neighboring domains are eventually pruned by 1 month of age. These observations suggest that domain formation is largely the consequence of competition between astrocyte processes, similar to the well‐studied competitive interactions between certain neuronal dendritic fields.

Collaboration


Dive into the Maryann E. Martone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amarnath Gupta

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilya Zaslavsky

University of California

View shared research outputs
Top Co-Authors

Avatar

Vadim Astakhov

University of California

View shared research outputs
Top Co-Authors

Avatar

Xufei Qian

University of California

View shared research outputs
Top Co-Authors

Avatar

Diana L. Price

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge