Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maryanne B. Covington is active.

Publication


Featured researches published by Maryanne B. Covington.


Cancer Biology & Therapy | 2006

Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells

Phillip Liu; Xiangdong Liu; Yanlong Li; Maryanne B. Covington; Richard Wynn; Reid Huber; Milton Hillman; Dawn Ellis; Cindy Marando; Kamna Katiyar; Jodi D. Bradley; Kenneth Abremski; Mark Stow; Mark Rupar; Jincong Zhuo; Yun-Long Li; Qiyan Lin; David M. Burns; Meizhong Xu; Colin Zhang; Ding-Quan Qian; Chunhong He; Vaqar Sharief; Lingkai Weng; Costas Agrios; Eric Shi; Brian Walter Metcalf; Robert Newton; Steven M. Friedman; Wenqing Yao

ALL AUTHORS: Phillip C.C. Liu, Xiangdong Liu, Yanlong Li, Maryanne Covington, Richard Wynn, Reid Huber, Milton Hillman, Gengjie Yang, Dawn Ellis, Cindy Marando, Kamna Katiyar, Jodi Bradley, Kenneth Abremski, Mark Stow, Mark Rupar, Jincong Zhuo, Yun-Long Li, Qiyan Lin, David Burns, Meizhong Xu, Colin Zhang, Ding-Quan Qian, Chunhong He, Vaqar Sharief, Lingkai Weng, Costas Agrios, Eric Shi, Brian Metcalf, Robert Newton, Steven Friedman, Wenqing Yaol, Peggy Scherlel, Gregory Hollis, Timothy C. Burn Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis. Thus, inhibition of the HER2 sheddase may provide a novel therapeutic approach for breast cancer. We describe the use of transcriptional profiling, pharmacological and in vitro approaches to identify the major source of HER2 sheddase activity. Real-time PCR was used to identify those ADAM family members which were expressed in HER2 shedding cell lines. siRNAs that selectively inhibited ADAM10 expression reduced HER2 shedding. In addition, we profiled over 1000 small molecules for in vitro inhibition of a panel of ADAM and MMP proteins; a positive correlation was observed only between ADAM10 inhibition and reduction of HER2 ECD shedding in a cell based assay. Finally, in vitro studies demonstrate that in combination with low doses of Herceptin, selective ADAM10 inhibitors decrease proliferation in HER2 overexpressing cell lines while inhibitors, that do not inhibit ADAM10, have no impact. These results are consistent with ADAM10 being a major determinant of HER2 shedding, the inhibition of which, may provide a novel therapeutic approach for treating a variety of cancers with active HER2 signaling.


Cancer Biology & Therapy | 2006

Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab

Xiangdong Liu; Jordan S. Fridman; Qian Wang; Eian Caulder; Maryanne B. Covington; Changnian Liu; Cindy Marando; Jincong Zhuo; Yanlong Li; Wenqing Yao; Kris Vaddi; Robert Newton; Peggy Scherle; Steven M. Friedman

The HER-2 receptor tyrosine kinase is an important regulator of cell proliferation and survival, and it is a clinically validated target of therapeutic intervention for HER-2 positive breast cancer patients. Its extracellular domain (ECD) is frequently cleaved by protease(s) in HER-2 overexpressing breast cancer patients, rendering the remaining membrane-bound portion (p95) a constitutively activated kinase. The presence of both serum ECD and cellular p95 protein has been linked to poor clinical outcome as well as reduced effectiveness of some therapeutic treatments. We have identified a series of potent, selective small molecule inhibitors of ADAM proteases, exemplified here by INCB003619, and demonstrate that these inhibitors effectively block HER-2 cleavage in HER-2 overexpressing human breast cancer cell lines. Intriguingly, when used in combination, INCB003619 dramatically enhances the antiproliferative activity of suboptimal doses of the anti-HER-2 antibody, trastuzumab, in HER-2 overexpressing/shedding breast cancer cell lines, accompanied by reduced ERK and AKT phosphorylation. Furthermore, INCB003619, in combination with trastuzumab, augments the pro-apoptotic and antiproliferative effects of the chemotherapeutic agent paclitaxel. Consistent with these in vitro data, INCB003619 reduces serum ECD levels and enhances the antitumor effect of trastuzumab in a xenograft tumor model derived from the HER-2 overexpressing BT-474 breast cancer cell line. Collectively, these findings suggest that blocking HER-2 cleavage with selective ADAM inhibitors may represent a novel therapeutic approach for treating HER-2 overexpressing breast cancer patients.


Bioorganic & Medicinal Chemistry Letters | 2002

CCR3 antagonists: a potential new therapy for the treatment of asthma. Discovery and structure–activity relationships

Dean A. Wacker; Joseph B. Santella; Daniel S. Gardner; Jeffrey G. Varnes; Melissa Estrella; George V. Delucca; Soo S. Ko; Keiichi Tanabe; Paul S. Watson; Patricia K. Welch; Maryanne B. Covington; Nicole Stowell; Eric A. Wadman; Paul Davies; Kimberly A. Solomon; Robert C. Newton; George L. Trainor; Steven M. Friedman; Carl P. Decicco; John V. Duncia

CCR3 antagonist leads with IC(50) values in the microM range were converted into low nM binding compounds that displayed in vitro inhibition of human eosinophil chemotaxis induced by human eotaxin. In particular, 4-benzylpiperidin-1-yl-n-propylureas and erythro-3-(4-benzyl-2-(alpha-hydroxyalkyl)piperidin-1-yl)-n-propylureas (obtained via Beak reaction of N-BOC-4-benzylpiperidine) exhibited single digit nanomolar IC(50) values for CCR3.


Journal of Pharmacology and Experimental Therapeutics | 2006

Selective Inhibition of Eosinophil Influx into the Lung by Small Molecule CC Chemokine Receptor 3 Antagonists in Mouse Models of Allergic Inflammation

Anuk Das; Krishna Vaddi; Kimberly A. Solomon; Candice M. Krauthauser; Xiaosui Jiang; Kim W. McIntyre; Xiao Xia Yang; Eric A. Wadman; Maryanne B. Covington; Danielle M. Graden; Krishnaswamy Yeleswaram; James M. Trzaskos; Robert Newton; Sandhya Mandlekar; Soo S. Ko; Percy H. Carter; Paul Davies

CC chemokine receptor (CCR) 3 is a chemokine receptor implicated in recruiting cells, particularly eosinophils (EΦ), to the lung in episodes of allergic asthma. To investigate the efficacy of selective, small molecule antagonists of CCR3, we developed a murine model of EΦ recruitment to the lung. Murine eotaxin was delivered intranasally to mice that had previously received i.p. injections of ovalbumin (OVA), and the effects were monitored by bronchoalveolar lavage. A selective eosinophilic influx was produced in animals receiving eotaxin but not saline. Furthermore, the number of EΦ was concentration- and time-dependent. Although anti-CCR3 antibody reduced the number of EΦ, the effect of eotaxin in OVA-sensitized mice was not a direct chemotactic stimulus because mast cell deficiency (in WBB6F1-Kitw/Kitw-v mice) significantly reduced the response. Two representative small molecule CCR3 antagonists from our program were characterized as being active at mouse CCR3. They were administered p.o. to wild-type mice and found to reduce eotaxin-elicited EΦ selectively in a dose-dependent manner. Pump infusion of one of the inhibitors to achieve steady-state levels showed that efficacy was not achieved at plasma concentrations equivalent to the in vitro chemotaxis IC90 but only at much higher concentrations. To extend the results from our recruitment model, we tested one of the inhibitors in an allergenic model of airway inflammation, generated by adoptive transfer of OVA-sensitive murine T helper 2 cells and aerosolized OVA challenge of recipient mice, and found that it inhibited EΦ recruitment. We conclude that small molecule CCR3 antagonists reduce pulmonary eosinophilic inflammation elicited by chemokine or allergenic challenge.


Bioorganic & Medicinal Chemistry Letters | 2003

Potent and selective aggrecanase inhibitors containing cyclic P1 substituents

Robert J. Cherney; Ruowei Mo; Dayton T. Meyer; Li Wang; Wenqing Yao; Zelda R. Wasserman; Rui-Qin Liu; Maryanne B. Covington; Micky D. Tortorella; Elizabeth C. Arner; Mingxin Qian; David D. Christ; James M. Trzaskos; Robert C. Newton; Ron L Magolda; Carl P. Decicco

Anti-succinate hydroxamates with cyclic P1 motifs were synthesized as aggrecanase inhibitors. The N-methanesulfonyl piperidine 23 and the N-trifluoroacetyl azetidine 26 were the most potent aggrecanase inhibitors both having an IC(50)=3nM while maintaining >100-fold selectivity over MMP-1, -2, and -9. The cyclic moieties were also capable of altering in vivo metabolism, hence delivering low clearance compounds in both rat and dog studies as shown for compound 14.


Bioorganic & Medicinal Chemistry Letters | 2003

Discovery of N-Hydroxy-2-(2-oxo-3-pyrrolidinyl)acetamides as potent and selective inhibitors of tumor necrosis factor-α converting enzyme (TACE)

James J.-W. Duan; Zhonghui Lu; Chu-Biao Xue; Xiaohua He; Jennifer L. Seng; John Roderick; Zelda R. Wasserman; Rui-Qin Liu; Maryanne B. Covington; Ronald L. Magolda; Robert C. Newton; James M. Trzaskos; Carl P. Decicco

New inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered using an N-hydroxy-2-(2-oxo-3-pyrrolidinyl)acetamide scaffold. The series was found to be potent in a porcine TACE (pTACE) assay with IC(50)s typically below 5 nM. For most compounds, selectivity for pTACE relative to MMP-1,-2, and -9 is at least 300-fold. Compound 2o was potent in inhibition of TNFalpha production in a human whole blood assay (WBA) with an IC(50) of 0.42 micro M.


Bioorganic & Medicinal Chemistry Letters | 2004

Synthesis and structure-activity relationship of a novel, achiral series of TNF-α converting enzyme inhibitors

Chu-Biao Xue; Xiao-Tao Chen; Xiaohua He; John Roderick; Ronald L. Corbett; Bahman Ghavimi; Rui-Qin Liu; Maryanne B. Covington; Mingxin Qian; Maria D. Ribadeneira; Krishna Vaddi; James M. Trzaskos; Robert C. Newton; James J.-W. Duan; Carl P. Decicco

Replacement of the amide functionality in IM491 (N-hydroxy-(5S,6S)-1-methyl-6-[[4-(2-methyl-4-quinolinylmethoxy)anilinyl]carbonyl]5-piperidinecarboxamide) with a sulfonyl group led to a new series of alpha,beta-cyclic and beta,beta-cyclic gamma-sulfonyl hydroxamic acids, which were potent TNF-alpha converting enzyme (TACE) inhibitors. Among them, inhibitor 4b (N-hydroxy-(4S,5S)-1-methyl-5-[[4-(2-methyl-4-quinolinylmethoxy)phenyl]sulfonylmethyl]-4-pyrrolidinecarboxamide) exhibited IC50 values of < 1 nM and 180 nM in porcine TACE (pTACE) and cell assays, respectively, with excellent selectivity over MMP-1, -2, -9 and -13 and was orally bioavailable with an F value of 46% in mice.


ACS Medicinal Chemistry Letters | 2011

Discovery of INCB8761/PF-4136309, a Potent, Selective, and Orally Bioavailable CCR2 Antagonist.

Chu-Biao Xue; Anlai Wang; Qi Han; Yingxin Zhang; Ganfeng Cao; Hao Feng; Taisheng Huang; Changsheng Zheng; Michael Xia; Ke Zhang; Lingquan Kong; Joseph Glenn; Rajan Anand; David Meloni; Darius J. Robinson; Lixin Shao; Lou Storace; Mei Li; Robert O. Hughes; Rajesh Devraj; Philip A. Morton; D. Joseph Rogier; Maryanne B. Covington; Peggy Scherle; Sharon Diamond; Tom Emm; Swamy Yeleswaram; Nancy Contel; Kris Vaddi; Robert Newton

We report the discovery of a new (S)-3-aminopyrrolidine series of CCR2 antagonists. Structure-activity relationship studies on this new series led to the identification of 17 (INCB8761/PF-4136309) that exhibited potent CCR2 antagonistic activity, high selectivity, weak hERG activity, and an excellent in vitro and in vivo ADMET profile. INCB8761/PF-4136309 has entered human clinical trials.


ACS Medicinal Chemistry Letters | 2011

Discovery of INCB3284, a Potent, Selective, and Orally Bioavailable hCCR2 Antagonist.

Chu-Biao Xue; Hao Feng; Ganfeng Cao; Taisheng Huang; Joseph Glenn; Rajan Anand; David Meloni; Ke Zhang; Lingquan Kong; Anlai Wang; Yingxin Zhang; Changsheng Zheng; Michael Xia; Lihua Chen; Hiroyuki Tanaka; Qi Han; Darius J. Robinson; Dilip P. Modi; Lou Storace; Lixin Shao; Vaqar Sharief; Mei Li; Laurine G. Galya; Maryanne B. Covington; Peggy Scherle; Sharon Diamond; Tom Emm; Swamy Yeleswaram; Nancy Contel; Kris Vaddi

We report the identification of 13 (INCB3284) as a potent human CCR2 (hCCR2) antagonist. INCB3284 exhibited an IC50 of 3.7 nM in antagonism of monocyte chemoattractant protein-1 binding to hCCR2, an IC50 of 4.7 nM in antagonism of chemotaxis activity, an IC50 of 84 μM in inhibition of the hERG potassium current, a free fraction of 58% in protein binding, high selectivity over other chemokine receptors and G-protein-coupled receptors, and acceptable oral bioavailability in rodents and primates. In human clinical trials, INCB3284 exhibited a pharmacokinetic profile suitable for once-a-day dosing (T 1/2 = 15 h).


Journal of Pharmacology and Experimental Therapeutics | 2011

Identification and Characterization of INCB9471, an Allosteric Noncompetitive Small-Molecule Antagonist of C-C Chemokine Receptor 5 with Potent Inhibitory Activity against Monocyte Migration and HIV-1 Infection

Niu Shin; Kim Solomon; Naiming Zhou; Kathy Wang; Vasudha Garlapati; Beth Thomas; Yanlong Li; Maryanne B. Covington; Frédéric Baribaud; Susan Erickson-Viitanen; Philip Czerniak; Nancy Contel; Philip L. Liu; Timothy C. Burn; Gregory F. Hollis; Swamy Yeleswaram; Kris Vaddi; Chu-Biao Xue; Brian Metcalf; Steve Friedman; Peggy Scherle; Robert Newton

C-C chemokine receptor 5 (CCR5) is a clinically proven target for inhibition of HIV-1 infection and a potential target for various inflammatory diseases. In this article, we describe 5-[(4-{(3S)-4-[(1R,2R)-2-ethoxy-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]-3-methylpiperazin-1-yl}-4-methylpiperidin-1-yl)carbonyl]-4,6-dimethylpyrimidine dihydrochloride (INCB9471), a potent and specific inhibitor of human CCR5 that has been proven to be safe and efficacious in viral load reduction in phase I and II human clinical trails. INCB9471 was identified using a primary human monocyte-based radioligand competition binding assay. It potently inhibited macrophage inflammatory protein-1β-induced monocyte migration and infection of peripheral blood mononuclear cells by a panel of R5-HIV-1 strains. The results from binding and signaling studies using incremental amounts of INCB9471 demonstrated INCB9471 as a noncompetitive CCR5 inhibitor. The CCR5 residues that are essential for interaction with INCB9471 were identified by site-specific mutagenesis studies. INCB9471 rapidly associates with but slowly dissociates from CCR5. When INCB9471 was compared with three CCR5 antagonists that had been tested in clinical trials, the potency of INCB9471 in blocking CCR5 ligand binding was similar to those of 4,6-dimethyl-5-{[4-methyl-4-((3S)-3-methyl-4-{(1R0–2-(methyloxy)-1-[4-(trifluoromethyl) phenyl]ethyl}-1-piperazingyl)-1-piperidinyl]carbonyl}pyrimidine (SCH-D; vicriviroc), 4-{[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxyl)methyl]-2, 5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenyl]oxy}benzoic acid hydrochloride (873140; aplaviroc), and 4,4-difluoro-N-((1S)-3-{(3-endo)-3-[3-methyl-5-(1-methylethyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl}-1-phenylpropyl)cyclohexanecarboxamide (UK427857; maraviroc). Its inhibitory activity against CCR5-mediated Ca2+ mobilization was also similar to those of SCH-D and 873140. Further analysis suggested that INCB9471 and UK427857 may have different binding sites on CCR5. The significance of two CCR5 antagonists with different binding sites is discussed in the context of potentially overcoming drug-resistant HIV-1 strains.

Collaboration


Dive into the Maryanne B. Covington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge