Maryanne C. Herzig
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maryanne C. Herzig.
Mechanisms of Ageing and Development | 2008
Guogang Xu; Maryanne C. Herzig; Vladimír Rotrekl; Christi A. Walter
DNA damage and mutagenesis are suggested to contribute to aging through their ability to mediate cellular dysfunction. The base excision repair (BER) pathway ameliorates a large number of DNA lesions that arise spontaneously. Many of these lesions are reported to increase with age. Oxidized guanine, repaired largely via base excision repair, is particularly well studied and shown to increase with age. Spontaneous mutant frequencies also increase with age which suggests that mutagenesis may contribute to aging. It is widely accepted that genetic instability contributes to age-related occurrences of cancer and potentially other age-related pathologies. BER activity decreases with age in multiple tissues. The specific BER protein that appears to limit activity varies among tissues. DNA polymerase-beta is reduced in brain from aged mice and rats while AP endonuclease is reduced in spermatogenic cells obtained from old mice. The differences in proteins that appear to limit BER activity among tissues may represent true tissue-specific differences in activity or may be due to differences in techniques, environmental conditions or other unidentified differences among the experimental approaches. Much remains to be addressed concerning the potential role of BER in aging and age-related health span.
Biochemical Pharmacology | 2000
Barbara A. Woynarowska; Jan M. Woynarowski; Maryanne C. Herzig; Kari Roberts; Arlene L. Higdon; John R. MacDonald
This investigation compared the effects of hydroxymethylacylfulvene (HMAF), a novel antitumor drug with alkylating properties, in eight human tumor (prostate, colon, and leukemia) cell lines, and five human normal (prostate and renal proximal tubule epithelial, colon mucosa, fibroblasts, and endothelial) cell lines. Drug-induced growth inhibition paralleled the uptake of HMAF into both tumor and normal cells, although normal cells were 3- to 4-fold more tolerant to the accumulated drug. In both tumor and normal cells, approximately two-thirds of internalized [(14)C]HMAF-derived radioactivity was bound covalently to macromolecules. Trypan blue exclusion and cell counts indicated that HMAF was cytotoxic in tumor but cytostatic in normal cells. Correspondingly, profound apoptosis was detected in all tumor cell lines examined. A 4-hr treatment with HMAF followed by 20-hr post-incubation induced a potent DNA fragmentation in nearly all tumor lines. Apoptosis-resistant PC-3 and HT-29 cells underwent significant DNA fragmentation after 24 hr of continuous treatment with HMAF. In contrast to tumor cell lines, marginal or very low levels of apoptosis were detected in the normal cells even after prolonged treatments with HMAF at concentrations that exceeded 15- to 800-fold the GI(50) values in tumor cells. This resistance of normal cells to apoptosis could not be accounted for by differences in drug accumulation or drug covalent binding to macromolecules. The qualitatively different responses of the tumor and normal cells studied suggest a greater tolerance of normal cells to HMAF-macromolecular adducts. The demonstrated differential cytotoxic/cytostatic and apoptotic effects of HMAF can be of significance for the clinical use of this promising new agent.
Biochemical Pharmacology | 1999
Maryanne C. Herzig; Brenda Arnett; John R. MacDonald; Jan M. Woynarowski
Hydroxymethylacylfulvene (HMAF, MGI 114) is a novel antitumor drug and a potent pro-apoptotic agent that has the potential to alkylate cellular nucleophiles. The objective of these studies was to characterize drug uptake and cellular targets for drug binding in human leukemia CEM cells. The uptake of [14C]HMAF had two components: a rapid phase (0-10 min) and a slow phase. At 10 microM drug (37 degrees), the rapid and slower phase amounted to 0.86 and 0.13 pmol/min/10(6)cells, respectively. HMAF uptake was inhibited 82% by low temperature (4 degrees) at 4 hr. Cell-associated HMAF localized to nuclear (50%), cytoplasmic (37%), and membrane fractions (10%). Continued drug uptake appeared to be driven by covalent binding to cellular macromolecules. Approximately 1/4 and 2/3 of cell-associated HMAF formed covalent adducts after 10 min and 4 hr, respectively, as found by perchloric acid precipitation. Drug adducts were not readily reversible; 77% of the covalently bound radiolabel was retained by the cells 20 hr after drug treatment. Combinations of DNase, RNase, and proteinase K with perchloric acid precipitation showed that approximately 60, 30, and 10% of the covalently bound drug was associated with the protein, DNA, and RNA fractions, respectively. Incubation of 100 microM [14C]HMAF (24 hr) with purified DNA, serum albumin, thioredoxin, and thioredoxin reductase resulted in 6, 22, 14, and 11 pmol [14C]HMAF/microg DNA or protein, respectively. Results indicate that multiple targets for HMAF binding may contribute to the pro-apoptotic and antiproliferative action of the drug.
Journal of Biological Chemistry | 1996
Maryanne C. Herzig; Norman R. Nash; Maureen Connolly; Donald J. Kyle; L. M. Fredrik Leeb-Lundberg
Chemical cross-linking combined with site-directed mutagenesis was used to evaluate the role of extracellular cysteines and their positions relative to the binding site for the agonist bradykinin (BK) in the human BK B2 receptor. All extracellular cysteines, Cys20, Cys103, Cys184, and Cys277, in the receptor were mutated to serines, and single and double mutants were transfected into COS-7 cells. The Ser20 and Ser277 single mutants and the Ser20/Ser277 double mutant bound [3H]BK and the antagonist [3H]NPC17731 with pharmacological profiles identical to the wild-type B2 receptor. In contrast, the Ser103 and Ser184 single mutants were unable to bind either of the two radioligands. However, these mutants were still expressed as determined by immunoblotting with anti-B2 receptor antibodies. Previous studies on the bovine B2 receptor showed that bifunctional reagents, which are reactive to amines at one end and to free sulfhydryls in the opposite end, cross-link the N terminus of receptor-bound BK to a sulfhydryl in the receptor (Herzig, M. C. S., and Leeb-Lundberg, L. M. F. (1995) J. Biol. Chem. 270, 20591-20598). Here, we show that m-maleimidobenzoyl-N-hydroxysuccinimide ester and 1,5-difluoro-2,4-dinitrobenzene cross-linked BK to the wild-type human B2 receptor and the Ser20 and Ser277 single mutant receptors, whereas these reagents were unable to cross-link BK to the Ser20/Ser277 double mutant. These results show that Cys103 and Cys184 are both required for expression of high affinity agonist and antagonist binding sites in the human B2 receptor, while Cys20 and Cys277 are not required. Furthermore, the results provide direct biochemical evidence that the N terminus of BK, when bound to the B2 receptor, is adjacent to Cys277 in extracellular domain 4 and Cys20 in extracellular domain 1 of the receptor.
Biochemical Pharmacology | 2003
Maryanne C. Herzig; Alex V. Trevino; Huiyun Liang; Richard Salinas; Stephen J. Waters; John R. MacDonald; Barbara A. Woynarowska; Jan M. Woynarowski
The overexpression of Bcl-2 is implicated in the resistance of cancer cells to apoptosis. This study explored the potential of irofulven (hydroxymethylacylfulvene, HMAF, MGI 114, NSC 683863), a novel DNA- and protein-reactive anticancer drug, to overcome the anti-apoptotic properties of Bcl-2 in HeLa cells with controlled Bcl-2 overexpression. Irofulven treatment resulted in rapid (12hr) dissipation of the mitochondrial membrane potential, phosphatidylserine externalization, and apoptotic DNA fragmentation, with progressive changes after 24hr. Bcl-2 overexpression caused marginal or partial inhibition of these effects after treatment times ranging from 12 to 48hr. Both Bcl-2-dependent and -independent responses to irofulven were abrogated by a broad-spectrum caspase inhibitor. Despite the somewhat decreased apoptotic indices, cell growth inhibition by irofulven was unaffected by Bcl-2 status. In comparison, Bcl-2 overexpression drastically reduced apoptotic DNA fragmentation by etoposide, acting via topoisomerase II-mediated DNA damage, but had no effect on apoptotic DNA fragmentation by helenalin A, which reacts with proteins but not DNA. Irofulven retains its pro-apoptotic and growth inhibitory potential in cell lines that have naturally high Bcl-2 expression. Collectively, the results implicate multiple mechanisms of apoptosis induction by irofulven, which may differ in time course and Bcl-2 dependence. It is possible that the sustained ability of irofulven to induce profound apoptosis and to block cell growth despite Bcl-2 overexpression may be related to its dual reactivity with both DNA and proteins.
Breast Cancer Research and Treatment | 2002
Maryanne C. Herzig; Huiyun Liang; Anne E. Johnson; Barbara A. Woynarowska; Jan M. Woynarowski
Caspase-3 deficiency can limit the efficiency of pro-apoptotic anticancer treatments. Irofulven (hydroxymethylacylfulvene, HMAF, MGI 114, NSC 683863) is an antitumor drug, currently in a Phase III and multiple Phase II trials, which can differentiate between tumor and normal cells in apoptosis induction. This study investigated whether apoptosis induced by irofulven requires caspase-3. Irofulven action was compared in breast cancer cells differing in caspase-3 status: deficient MCF-7 cells and proficient MDA-MB-231 cells and in normal human mammary epithelial cells, HMEC. Irofulven induces significant, concentration and time-dependent apoptotic DNA fragmentation in breast cancer cell lines, regardless of caspase-3 status. After 12, 24 and 48 h incubation at 1 μM irofulven (∼ 3 × GI50), fragmented DNA comprised 3.7, 14.1 and 34.6% and 8.4, 12.6 and 20.3% of total DNA in MCF-7 and MDA-MB-231 cells, respectively. Cell viability (trypan blue exclusion) remained largely unaffected during the first 24 h but decreased markedly after 48 h, indicating secondary necrosis. Net losses in cell numbers were apparent at 48 h. Normal HMEC cells were refractory to 1 μM drug with only ∼3–9% fragmented DNA after 12–48 h, although apoptosis was observed at drug levels >3 μM. The broad-spectrum caspase inhibitor Z-VAD-fmk inhibited irofulven-induced apoptosis of all cell lines at 20 μM with nearly complete abrogation of apoptosis at 100 μM. Irofulven treatment resulted in marginal caspase-3 processing in MDA-MB-231 and HMEC cells. These results indicate that whereas the caspase cascade mediates irofulven- induced apoptosis, caspase-3 is dispensable (supported by NIH CA70091 and CA78706).
PLOS ONE | 2013
Xiaoxin Mu; Shu Lin; Junhua Yang; Chen Chen; Yun Chen; Maryanne C. Herzig; Kenneth Washburn; Glenn A. Halff; Christi A. Walter; Beicheng Sun; Lu-Zhe Sun
The role of transforming growth factor-beta (TGF-β) signaling in hepatocarcinogenesis remains controversial. We aimed to reveal TGF-β signaling status in human and murine tissues of hepatocellular carcinoma (HCC) and the mechanisms that mediate TGF-β’s role in regulating HCC malignancy. Here, TGF-β pathway component expression and activation in human and murine HCC tissues were measured with quantitative RT-PCR and Western blotting assays. The role of TGF-β receptor and Smad signaling in the growth and survival of several HCC cell lines was determined with several in vitro and in vivo approaches. We found that TGF-β receptor II (TβRII) expression was downregulated in two different HCC patient cohorts. Consistently, Smad3 phosphorylation was also downregulated in HCC tissues in comparison to that in adjacent normal tissues. Interestingly, many HCC cell lines were sensitive to TGF-β and growth-inhibited by exogenous TGF-β. However, stable knockdown of TβRII inhibited cell growth on plastic and in soft agar, and induced apoptosis resulting in suppressed subcutaneous tumor growth and metastatic potential in vivo. Furthermore, knockdown of Smad4 also led to a significant inhibition of growth on plastic and in soft agar with concomitant increase of apoptosis, PTEN expression, and reduced nuclear accumulation of linker region-phosphorylated Smad3. Taken together, TGF-β signaling pathway plays a dichotomous role in hepatocellular carcinogenesis. It appears to suppress HCC development, but is retained for HCC cell survival and malignancy. Furthermore, Smad4 can mediate both growth inhibitory activity induced by exogenous TGF-β and the survival activity induced by autocrine TGF-β revealing a delicate selection of the two opposing activities of TGF-β during HCC evolution.
Journal of Trauma-injury Infection and Critical Care | 2017
Nicolas J. Prat; Maryanne C. Herzig; Stefan Kreyer; Robbie K. Montgomery; Bijaya K. Parida; Katharina Linden; Vittorio Scaravilli; Slava Belenkiy; Leopoldo C. Cancio; Andrew P. Cap
BACKGROUND Smoke inhalation and burn injury remain a major source of morbidity and mortality. There is known dysregulation of hemostasis in burn patients, but either hypercoagulation or hypocoagulation states are reported. Sheep are an established animal model for studying burn pathology and provide robust data on hemostatic function at baseline and after injury. METHODS After an IACUC-approved protocol, 15 sheep were anesthetized and subjected to a 40% full thickness burn with smoke inhalation. Blood was sampled at baseline, 1 day postinjury (early effects) and days 2, 3, and 4 (late effects) after injury. Assays at each timepoint assessed: hemostatic function by thromboelastography (TEG), platelet counts and function by flow cytometry and aggregometry, coagulation protein levels, and free hemoglobin. Data were analyzed by the Wilcoxon paired test (nonparametric) with significance set at less than 0.05. RESULTS By 24 hours postinjury, platelet counts had dropped, whereas the percent activated platelets increased. Absolute platelet functional response to the agonist adenosine diphosphate (ADP) decreased, whereas response to collagen showed no significant difference. On a per platelet basis, ADP response was unchanged, whereas the collagen response was elevated. Prothrombin time and activated partial thromboplastin time were prolonged. TEG parameters decreased significantly from baseline. Fibrinogen and factor V were trending up; coagulation proteins ATIII, factors IX and X were decreased. Late effects were followed in six animals. At day 4, platelet counts remained depressed compared with baseline with a nadir at day 2; responses to agonist on a per platelet basis remained the same for ADP and stayed elevated for collagen. Platelets continued to have elevated activation levels. Fibrinogen and factor V remained significantly elevated, whereas TEG parameters and prothrombin time, factors IX and X returned to near baseline levels. CONCLUSION Coagulation parameters and hemostasis are dysregulated in sheep after smoke inhalation and burn. By 24 hours, sheep were hypocoagulable and subsequently became hypercoagulable by day 4. These results suggest a three-stage coagulopathy in burn injuries with a known early consumptive hypercoagulable state which is followed by a relatively hypocoagulable state with increased bleeding risk and then a return to a relatively unknown hypercoagulability with increased susceptibility to thrombotic disorders.
Journal of Trauma-injury Infection and Critical Care | 2017
Barbara A. Christy; Maryanne C. Herzig; Robbie K. Montgomery; Christopher Delavan; James A. Bynum; Kristin M. Reddoch; Andrew P. Cap
BACKGROUND Allogeneic mesenchymal stem cells (MSCs) show great potential for the treatment of military and civilian trauma based on their reduced immunogenicity and ability to modulate inflammation and immune function in the recipient. Although generally considered to be safe, MSCs express tissue factor (TF), a potent activator of coagulation. In the current study, we evaluated multiple MSC populations for tissue factor expression and procoagulant activity to characterize safety considerations for systemic use of MSCs in trauma patients who may have altered coagulation homeostasis. METHODS Multiple MSC populations derived from either human adipose tissue or bone marrow were expanded in the recommended stem cell media. Stem cell identity was confirmed using a well-characterized panel of positive and negative markers. Tissue factor expression on the cell surface was evaluated by flow cytometry with anti-CD142 antibody. Effects on blood coagulation were determined by thromboelastography and calibrated automated thrombogram assays using platelet-poor plasma or whole blood. RESULTS Mesenchymal stem cells express tissue factor on their surfaces and are procoagulant in the presence of blood or plasma. The adipose-derived MSCs (Ad-MSC) evaluated were more procoagulant and expressed more tissue factor than bone marrow MSCs (BM-MSCs), which showed a greater variability in TF expression. Bone marrow MSCs were identified that exhibited low procoagulant activity, whereas all Ad-MSCs examined exhibited high procoagulant activity. The percentage of cells in a given population expressing surface tissue factor correlates roughly with functional procoagulant activity. Mesenchymal stem cell tissue factor expression and procoagulant activity change over time in culture. CONCLUSIONS All MSC populations are not equivalent; care should be taken to select cells for clinical use that minimize potential safety problems and maximize chance of patient benefit. Adipose-derived MSCs seem more consistently procoagulant than BM-MSCs, presenting a potential safety concern for systemic administration in coagulopathic patients. Donor variation exists between different cell populations, and culture handling conditions may also determine coagulation activity. Cells must be routinely monitored during preparation to ensure that they retain the desired characteristics before patient administration.
Transfusion | 2016
Maryanne C. Herzig; Andrew P. Cap
T raumatic injuries demand immediate hemorrhage control and resuscitation, as well as definitive repair and infection management to prevent death from hemorrhagic shock. Recent advances in hemorrhage control and blood-based, hemostatic resuscitation can reduce the risk of early death due to bleeding, but a significant burden of morbidity and mortality thought to be caused by inflammation leading to multiorgan failure (MOF) persists and, currently, adequate treatment modalities are lacking. Stem cells, which include embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), and mesenchymal stem cells (MSCs) are unspecialized, multipotent progenitor cells with the capability of self-renewal followed by differentiation. They respond to inflammatory mediators and home to the site of injury and can release paracrine factors for growth signaling and immunomodulation. By utilizing these mechanisms, stem cells may reduce mortality due to MOF and promote wound healing. Stem cells have been shown to hold great promise in treating other pathophysiologic states in which inflammation plays a major role such as acute graft-versus-host disease, acute respiratory distress syndrome, myocardial infarction, and stroke. Thus, cellular therapy with stem cells for traumatic injuries also holds great promise. However, a major limitation to the use of either ES or iPS cells has been the formation of teratomas. MSCs are adult stem cells generally harvested from marrow, but also found in the stromal vascular fraction of other tissues. Upon appropriate signaling, MSCs differentiate into bone, cartilage, or fat cells. Additionally, they appear to have a paracrine function and have also been termed mesenchymal signaling cells or mesenchymal stromal cells. While MSCs have been shown to home to tumors, unlike ES or iPS cells, MSCs do not form teratomas. The therapeutic potential of MSCs rests upon their regenerative capabilities, medicinal anti-inflammatory properties, and improved safety profile over other stem cells. In considering the potential use of MSCs in the early management of civilian or military trauma, an understanding of the pathophysiologic context of their use is required. For both civilians and military personnel, hemorrhage is the leading potentially reversible cause of traumatic death. In the last two conflicts in Southwest Asia, 26% of 4090 “killed in action” deaths were deemed potentially survivable. Fully 92% of these, or 984 deaths, were due to hemorrhage. Deaths due to hemorrhage are due to anatomic disruption and coagulopathy. In Kandahar, Afghanistan, 1.5% of the admissions were multiamputees; they required initiation of massive transfusion protocols with a mean of 54 units of blood products. Overall, in the last two conflicts of Operation Iraqi Freedom and Operation Enduring Freedom 13.6% of patients received transfusions. Coagulopathy, as evidenced by a mean international normalized ratio of more than 1.5 in patients receiving a transfusion, correlated with a fivefold increase in mortality. In severe trauma complicated by coagulopathy, there is massive fibrinogen consumption, with altered clotting kinetics and fibrinolysis, as well as platelet (PLT) consumption and dysfunction. Crystalloid fluid administration causes hemodilution and acidosis, and frequently hypothermia, adding iatrogenic injury that worsens bleeding. Decreased tissue perfusion with blood loss leads to tissue anoxia and acidosis. This completes the lethal triad of acidosis, hypothermia and coagulopathy. The
Collaboration
Dive into the Maryanne C. Herzig's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs