Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marybeth Howard is active.

Publication


Featured researches published by Marybeth Howard.


Critical Care | 2009

Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion

Mitchell J. Cohen; Karim Brohi; Carolyn S. Calfee; Pamela Rahn; Brian B. Chesebro; Sarah C. Christiaans; Michel Carles; Marybeth Howard; Jean-Francois Pittet

IntroductionHigh mobility group box nuclear protein 1 (HMGB1) is a DNA nuclear binding protein that has recently been shown to be an early trigger of sterile inflammation in animal models of trauma-hemorrhage via the activation of the Toll-like-receptor 4 (TLR4) and the receptor for the advanced glycation endproducts (RAGE). However, whether HMGB1 is released early after trauma hemorrhage in humans and is associated with the development of an inflammatory response and coagulopathy is not known and therefore constitutes the aim of the present study.MethodsOne hundred sixty eight patients were studied as part of a prospective cohort study of severe trauma patients admitted to a single Level 1 Trauma center. Blood was drawn within 10 minutes of arrival to the emergency room before the administration of any fluid resuscitation. HMGB1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, von Willebrand Factor (vWF), angiopoietin-2 (Ang-2), Prothrombin time (PT), prothrombin fragments 1+2 (PF1+2), soluble thrombomodulin (sTM), protein C (PC), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA) and D-Dimers were measured using standard techniques. Base deficit was used as a measure of tissue hypoperfusion. Measurements were compared to outcome measures obtained from the electronic medical record and trauma registry.ResultsPlasma levels of HMGB1 were increased within 30 minutes after severe trauma in humans and correlated with the severity of injury, tissue hypoperfusion, early posttraumatic coagulopathy and hyperfibrinolysis as well with a systemic inflammatory response and activation of complement. Non-survivors had significantly higher plasma levels of HMGB1 than survivors. Finally, patients who later developed organ injury, (acute lung injury and acute renal failure) had also significantly higher plasma levels of HMGB1 early after trauma.ConclusionsThe results of this study demonstrate for the first time that HMGB1 is released into the bloodstream early after severe trauma in humans. The release of HMGB1 requires severe injury and tissue hypoperfusion, and is associated with posttraumatic coagulation abnormalities, activation of complement and severe systemic inflammatory response.


Journal of Biological Chemistry | 2003

Transforming Growth Factor-β1 Decreases Expression of the Epithelial Sodium Channel αENaC and Alveolar Epithelial Vectorial Sodium and Fluid Transport via an ERK1/2-dependent Mechanism

James A. Frank; Jérémie Roux; Hisaaki Kawakatsu; George Su; André Dagenais; Yves Berthiaume; Marybeth Howard; Cecilia M. Canessa; Xiaohui Fang; Dean Sheppard; Michael A. Matthay; Jean-Francois Pittet

Acute lung injury (ALI) is characterized by the flooding of the alveolar airspaces with protein-rich edema fluid and diffuse alveolar damage. We have previously reported that transforming growth factor-β1 (TGF-β1) is a critical mediator of ALI after intratracheal administration of bleomycin or Escherichia coli endotoxin, at least in part due to effects on lung endothelial and alveolar epithelial permeability. In the present study, we hypothesized that TGF-β1 would also decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we studied the effect of active TGF-β1 on 22Na+ uptake across monolayers of primary rat and human alveolar type II (ATII) cells. TGF-β1 significantly reduced the amiloride-sensitive fraction of 22Na+ uptake and fluid transport across monolayers of both rat and human ATII cells. TGF-β1 also significantly decreased αENaC mRNA and protein expression and inhibited expression of a luciferase reporter downstream of the αENaC promoter in lung epithelial cells. The inhibitory effect of TGF-β1 on sodium uptake and αENaC expression in ATII cells was mediated by activation of the MAPK, ERK1/2. Consistent with the in vitro results, TGF-β1 inhibited the amiloride-sensitive fraction of the distal airway epithelial fluid transport in an in vivo rat model at a dose that was not associated with any change in epithelial protein permeability. These data indicate that increased TGF-β1 activity in the distal airspaces during ALI promotes alveolar edema by reducing distal airway epithelial sodium and fluid clearance. This reduction in sodium and fluid transport is attributable in large part to a reduction in apical membrane αENaC expression mediated through an ERK1/2-dependent inhibition of the αENaC promoter activity.


Circulation Research | 2008

Interleukin-1β Causes Acute Lung Injury via αvβ5 and αvβ6 Integrin–Dependent Mechanisms

Michael T. Ganter; Jérémie Roux; Byron Miyazawa; Marybeth Howard; James A. Frank; George Su; Dean Sheppard; Shelia M. Violette; Paul H. Weinreb; Gerald S. Horan; Michael A. Matthay; Jean-François Pittet

Interleukin (IL)-1&bgr; has previously been shown to be among the most biologically active cytokines in the lungs of patients with acute lung injury (ALI). Furthermore, there is experimental evidence that lung vascular permeability increases after short-term exposure to IL-1 protein, although the exact mechanism is unknown. Therefore, the objective of this study was to determine the mechanisms of IL-1&bgr;–mediated increase in lung vascular permeability and pulmonary edema following transient overexpression of this cytokine in the lungs by adenoviral gene transfer. Lung vascular permeability increased with intrapulmonary IL-1&bgr; production with a maximal effect 7 days after instillation of the adenovirus. Furthermore, inhibition of the &agr;v&bgr;6 integrin and/or transforming growth factor-&bgr; attenuated the IL-1&bgr;–induced ALI. The results of in vitro studies indicated that IL-1&bgr; caused the activation of transforming growth factor-&bgr; via RhoA/&agr;v&bgr;6 integrin–dependent mechanisms and the inhibition of the &agr;v&bgr;6 integrin and/or transforming growth factor-&bgr; signaling completely blocked the IL-1&bgr;–mediated protein permeability across alveolar epithelial cell monolayers. In addition, IL-1&bgr; increased protein permeability across lung endothelial cell monolayers via RhoA- and &agr;v&bgr;5 integrin–dependent mechanisms. The final series of in vivo experiments demonstrated that pretreatment with blocking antibodies to both the &agr;v&bgr;5 and &agr;v&bgr;6 integrins had an additive protective effect against IL-1&bgr;–induced ALI. In summary, these results demonstrate a critical role for the &agr;v&bgr;5/&bgr;6 integrins in mediating the IL-1&bgr;–induced ALI and indicate that these integrins could be a potentially attractive therapeutic target in ALI.


The FASEB Journal | 2006

Activation of the stress protein response prevents the development of pulmonary edema by inhibiting VEGF cell signaling in a model of lung ischemia-reperfusion injury in rats

M. Godzich; Maki Hodnett; James A. Frank; G. Su; Melissa H. Pespeni; A. Angel; Marybeth Howard; Michael A. Matthay; Jean-Francois Pittet

Lung endothelial damage is a characteristic morphological feature of ischemia‐reperfusion (I/R) injury, although the molecular steps involved in the loss of endothelial integrity are still poorly understood. We tested the hypothesis that the activation of vascular endothelial growth factor (VEGF) cell signaling would be responsible for the increase in lung vascular permeability seen early after the onset of I/R in rats. Furthermore, we hypothesized that the I/R‐induced pulmonary edema would be significantly attenuated in rats by the activation of the stress protein response. Pretreatment with Ad Flk‐1, an adenovirus encoding for the soluble VEGF receptor type II, prevented I/R‐mediated increase in lung vascular permeability in rats. Furthermore, the I/R‐induced lung injury was significantly decreased by prior activation of the stress protein response with geldanamycin or pyrrolidine dithiocarbamate. In vitro studies demonstrated that VEGF caused an increase in protein permeability across primary cultures of bovine macro‐ and microvascular lung endothelial cell monolayers that were associated with a phosphorylation of VE‐ and E‐cadherin and the formation of actin stress fibers. Activation of the stress protein response prevented the VEGF‐mediated changes in protein permeability across these cell monolayers and reduced the phosphorylation of VE‐and E‐cadherins, as well as the formation of actin stress fibers in these cells.—Godzich, M., Hodnett, M., Frank, J. A., Su, G., Pespeni, M., Angel, A., Howard, M. B., Matthay, M. A., Pitte, J. F. Activation of the stress protein response prevents the development of pulmonary edema by inhibiting VEGF cell signaling in a model of lung ischemia‐reperfusion injury in rats. FASEB J. 20, E757–E768 (2006)


American Journal of Respiratory Cell and Molecular Biology | 2011

Cytoprotective-Selective Activated Protein C Attenuates Pseudomonas aeruginosa–Induced Lung Injury in Mice

Nastasha Bir; Mathieu Lafargue; Marybeth Howard; Arnaud Goolaerts; Jérémie Roux; Michel Carles; Mitchell J. Cohen; Karen E. Iles; José A. Fernández; Jean-Francois Pittet

Inhibition of the small GTPase RhoA attenuates the development of pulmonary edema and restores positive alveolar fluid clearance in a murine model of Pseudomonas aeruginosa pneumonia. Activated protein C (aPC) blocks the development of an unfavorably low ratio of small GTPase Rac1/RhoA activity in lung endothelium through endothelial protein C receptor (EPCR)/protease-activated receptor-1 (PAR-1)-dependent signaling mechanisms that include transactivating the sphingosine-1-phosphate (S1P) pathway. However, whether aPCs cytoprotective effects can attenuate the development of pulmonary edema and death associated with P. aeruginosa pneumonia in mice remains unknown. Thus, we determined whether the normalization of a depressed ratio of activated Rac1/RhoA by aPC would attenuate the P. aeruginosa-mediated increase in protein permeability across lung endothelial and alveolar epithelial barriers. Pretreatment with aPC significantly reduced P. aeruginosa-induced increases in paracellular permeability across pulmonary endothelial cell and alveolar epithelial monolayers via an inhibition of RhoA activation and a promotion of Rac1 activation that required the EPCR-PAR-1 and S1P pathways. Furthermore, pretreatment with aPC attenuated the development of pulmonary edema in a murine model of P. aeruginosa pneumonia. Finally, a cytoprotective-selective aPC mutant, aPC-5A, which lacks most of aPCs anticoagulant activity, reproduced the protective effect of wild-type aPC by attenuating the development of pulmonary edema and decreasing mortality in a murine model of P. aeruginosa pneumonia. Taken together, these results demonstrate a critical role for the cytoprotective activities of aPC in attenuating P. aeruginosa-induced lung vascular permeability and mortality, suggesting that cytoprotective-selective aPC-5A with diminished bleeding risks could attenuate the lung damage caused by P. aeruginosa in critically ill patients.


Journal of Biological Chemistry | 2010

Transforming Growth Factor β1 Inhibits Cystic Fibrosis Transmembrane Conductance Regulator-dependent cAMP-stimulated Alveolar Epithelial Fluid Transport via a Phosphatidylinositol 3-Kinase-dependent Mechanism

Jérémie Roux; Michel Carles; Hidefumi Koh; Arnaud Goolaerts; Michael T. Ganter; Brian B. Chesebro; Marybeth Howard; Benjamin T. Houseman; Walter E. Finkbeiner; Kevan M. Shokat; Agnès C. Paquet; Michael A. Matthay; Jean-Francois Pittet

Exogenous or endogenous β2-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that transforming growth factor β1 (TGF-β1), a critical mediator of acute lung injury, inhibits β2-adrenergic receptor agonist-stimulated vectorial fluid and Cl− transport across primary rat and human alveolar epithelial type II cell monolayers. This inhibition is due to a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis mediated by a phosphatidylinositol 3-kinase (PI3K)-dependent heterologous desensitization and down-regulation of the β2-adrenergic receptors. Consistent with these in vitro results, inhibition of the PI3K pathway or pretreatment with soluble chimeric TGF-β type II receptor restored β2-adrenergic receptor agonist-stimulated alveolar epithelial fluid transport in an in vivo model of acute lung injury induced by hemorrhagic shock in rats. The results demonstrate a novel role for TGF-β1 in impairing the β- adrenergic agonist-stimulated alveolar fluid clearance in acute lung injury, an effect that could be corrected by using PI3K inhibitors that are safe to use in humans.


American Journal of Respiratory Cell and Molecular Biology | 2009

Role of Small GTPases and αvβ5 Integrin in Pseudomonas aeruginosa–Induced Increase in Lung Endothelial Permeability

Michael T. Ganter; Jérémie Roux; George Su; Susan V. Lynch; Clifford S. Deutschman; Yoram G. Weiss; Sarah C. Christiaans; Byron Myazawa; Eric Kipnis; Jeanine P. Wiener-Kronish; Marybeth Howard; Jean-Francois Pittet

Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe pneumonia associated with airspace flooding with protein-rich edema in critically ill patients. The type III secretion system is a major virulence factor and contributes to dissemination of P. aeruginosa. However, it is still unknown which particular bacterial toxin and which cellular pathways are responsible for the increase in lung endothelial permeability induced by P. aeruginosa. Thus, the first objective of this study was to determine the mechanisms by which this species causes an increase in lung endothelial permeability. The results showed that ExoS and ExoT, two of the four known P. aeruginosa type III cytotoxins, were primarily responsible for bacterium-induced increases in protein permeability across the lung endothelium via an inhibition of Rac1 and an activation of the RhoA signaling pathway. In addition, inhibition of the alphavbeta5 integrin, a central regulator of lung vascular permeability, prevented these P. aeruginosa-mediated increases in albumin flux due to endothelial permeability. Finally, prior activation of the stress protein response or adenoviral gene transfer of the inducible heat shock protein Hsp72 also inhibited the damaging effects of P. aeruginosa on the barrier function of lung endothelium. Taken together, these results demonstrate the critical role of the RhoA/alphavbeta5 integrin pathway in mediating P. aeruginosa-induced lung vascular permeability. In addition, activation of the stress protein response with pharmacologic inhibitors of Hsp90 may protect lungs against P. aeruginosa-induced permeability changes.


Thorax | 2011

PAI-1 is an essential component of the pulmonary host response during Pseudomonas aeruginosa pneumonia in mice

Arnaud Goolaerts; Mathieu Lafargue; Yuanlin Song; Byron Miyazawa; Mehrdad Arjomandi; Michel Carles; Jérémie Roux; Marybeth Howard; Dale A. Parks; Karen E. Iles; Jean-Francois Pittet

Rationale Elevated plasma and bronchoalveolar lavage fluid plasminogen activator inhibitor 1 (PAI-1) levels are associated with adverse clinical outcome in patients with pneumonia caused by Pseudomonas aeruginosa. However, whether PAI-1 plays a pathogenic role in the breakdown of the alveolar–capillary barrier caused by P aeruginosa is unknown. Objectives The role of PAI-1 in pulmonary host defence and survival during P aeruginosa pneumonia in mice was tested. The in vitro mechanisms by which P aeruginosa causes PAI-1 gene and protein expression in lung endothelial and epithelial cells were also examined. Methods and results PAI-1 null and wild-type mice that were pretreated with the PAI-1 inhibitor Tiplaxtinin had a significantly lower increase in lung vascular permeability than wild-type littermates after the airspace instillation of 1×107 colony-forming units (CFU) of P aeruginosa bacteria. Furthermore, P aeruginosa in vitro induced the expression of the PAI-1 gene and protein in a TLR4/p38/RhoA/NF-κB (Toll-like receptor 4/p38/RhoA/nuclear factor-κB) manner in lung endothelial and alveolar epithelial cells. However, in vivo disruption of PAI-1 signalling was associated with higher mortality at 24 h (p<0.03) and higher bacterial burden in the lungs secondary to decreased neutrophil migration into the distal airspace in response to P aeruginosa. Conclusions The results indicate that PAI-1 is a critical mediator that controls the development of the early lung inflammation that is required for the activation of the later innate immune response necessary for the eradication of P aeruginosa from the distal airspaces of the lung.


Thorax | 2010

Activation of the stress protein response inhibits the STAT1 signalling pathway and iNOS function in alveolar macrophages: role of Hsp90 and Hsp70

Marybeth Howard; Jérémie Roux; Hyon Lee; Byron Miyazawa; Jae-Woo Lee; Brandi Gartland; Amanda J Howard; Michael A. Matthay; Michel Carles; Jean-Francois Pittet

Background and aim Alveolar fluid clearance is impaired by inducible nitric oxide synthase (iNOS)/nitric oxide (NO)-dependent mechanisms in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The activation of the stress protein response (SPR) in alveolar macrophages on iNOS-dependent NO production in response to interferon γ (IFNγ), a major cytokine present in the airspace of patients with ALI, was investigated. Methods The SPR was activated in murine and primary human alveolar macrophages prior to analysis of signal transducer and activator of transcription factor 1 (STAT1) activation, iNOS mRNA and protein synthesis, and NO production. Results SPR activation resulted in inhibition of IFNγ-mediated NO production (p=0.001) with >95% detergent insolubilisation of the STAT1 protein. Its subsequent proteasomal degradation was partially reversed with pretreatment of cells with the chemical chaperone glycerol. This early effect of the SPR was caused by the complete disruption of heat shock protein 90 (Hsp90)–STAT1 binding, as shown by immunoprecipitation. Recovery of STAT1 activation and recovery of iNOS synthesis occurred within 12 h after SPR activation (p=0.02). NO production (as compared with non-SPR controls) did not occur until 48 h later (p=0.02). SPR-induced Hsp70 (Hsp70i) expression caused a late inhibition of NO production (p=0.02). Inhibiting >50% Hsp70i expression recovered NO production to control levels whereas overexpressing Hsp70i in the absence of the SPR inhibited NO production (p=0.02). Conclusion Early inhibition of STAT1 following its dissociation from Hsp90, and later inhibition of iNOS activity by Hsp70i, represent novel mechanisms by which SPR activation modulates the IFNγ signalling in alveolar macrophages. These results highlight a potential clinical application for Hsp90 inhibitors in modulating NO signalling during the early phase of acute lung injury.


Cancer Research | 2007

Sensitization of Mesothelioma Cells to Tumor Necrosis Factor–Related Apoptosis–Inducing Ligand–Induced Apoptosis by Heat Stress via the Inhibition of the 3-Phosphoinositide-Dependent Kinase 1/Akt Pathway

Melissa H. Pespeni; Maki Hodnett; Keith S. Abayasiriwardana; Jérémie Roux; Marybeth Howard; V. Courtney Broaddus; Jean-Francois Pittet

Heat stress may enhance the effect of apoptosis-inducing agents in resistant tumor cells. One such agent is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which has attracted intense interest for its ability to induce apoptosis in tumors without affecting nonmalignant cells. We therefore tested whether heat stress potentiates TRAIL-induced apoptosis in mesothelioma cells, its cell type being resistant to TRAIL alone. We found that heat stress enhanced the apoptosis caused by TRAIL but not by chemotherapy. To explain this potentiation, we found that heat stress decreased Akt phosphorylation via the dissociation of heat shock protein 90 (Hsp90) from its client protein 3-phosphoinositide-dependent kinase 1 (PDK-1), a major Akt kinase. The role of Hsp90 and the Akt pathway was confirmed by showing that inhibitors of Hsp90 and the phosphatidyilinositol-3 kinase/Akt pathway reproduced the effect of heat stress on TRAIL-induced apoptosis and that the effect of inhibiting Hsp90 on TRAIL-induced apoptosis could be overcome by activating the Akt pathway with a constitutively active construct of the Akt kinase PDK-1. The effect of heat stress involved multiple steps of the apoptotic machinery. Heat stress potentiated the death receptor pathway, as shown by an increase in TRAIL-induced caspase 8 cleavage. Nonetheless, knockdown of Bid, the main intermediary molecule from the death receptor pathway to the mitochondria, inhibited the effect of heat stress, showing that mitochondrial amplification was required for potentiation by heat stress. In summary, these results support the novel concept that heat stress inhibits the Akt pathway by dissociating PDK-1 from its chaperone Hsp90, leading to potentiation of TRAIL-induced apoptosis in resistant malignant cells.

Collaboration


Dive into the Marybeth Howard's collaboration.

Top Co-Authors

Avatar

Jean-Francois Pittet

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jérémie Roux

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron Miyazawa

University of California

View shared research outputs
Top Co-Authors

Avatar

Michel Carles

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Arnaud Goolaerts

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Sarah C. Christiaans

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Su

San Francisco General Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge