Maryline G. Ferrier
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maryline G. Ferrier.
Journal of the American Chemical Society | 2016
John J. Kiernicki; Maryline G. Ferrier; Juan S. Lezama Pacheco; Henry S. La Pierre; Benjamin W. Stein; Matthias Zeller; Stosh A. Kozimor; Suzanne C. Bart
Arylazide and diazene activation by highly reduced uranium(IV) complexes bearing trianionic redox-active pyridine(diimine) ligands, [CpPU(MesPDIMe)]2 (1-CpP), Cp*U(MesPDIMe)(THF) (1-Cp*) (CpP = 1-(7,7-dimethylbenzyl)cyclopentadienide; Cp* = η5-1,2,3,4,5-pentamethylcyclopentadienide), and Cp*U(tBu-MesPDIMe) (THF) (1-tBu) (2,6-((Mes)N═CMe)2-p-R-C5H2N, Mes = 2,4,6-trimethylphenyl; R = H, MesPDIMe; R = C(CH3)3, tBu-MesPDIMe), has been investigated. While 1-Cp* and 1-CpP readily reduce N3R (R = Ph, p-tolyl) to form trans-bis(imido) species, CpPU(NAr)2(MesPDIMe) (Ar = Ph, 2-CpP; Ar = p-Tol, 3-CpP) and Cp*U(NPh)2(MesPDIMe) (2-Cp*), only 1-Cp* can cleave diazene N═N double bonds to form the same product. Complexes 2-Cp*, 2-CpP, and 3-CpP are uranium(V) trans-bis(imido) species supported by neutral [MesPDIMe]0 ligands formed by complete oxidation of [MesPDIMe]3- ligands of 1-CpP and 1-Cp*. Variation of the arylimido substituent in 2-Cp* from phenyl to p-tolyl, forming Cp*U(NTol)2(MesPDIMe) (3-Cp*), changes the electronic structure, generating a uranium(VI) ion with a monoanionic pyridine(diimine) radical. The tert-butyl-substituted analogue, Cp*U(NTol)2(tBu-MesPDIMe) (3-tBu), displays the same electronic structure. Oxidation of the ligand radical in 3-Cp* and 3-tBu by Ag(I) forms cationic uranium(VI) [Cp*U(NTol)2(MesPDIMe)][SbF6] (4-Cp*) and [Cp*U(NTol)2(tBu-MesPDIMe)][SbF6] (4-tBu), respectively, as confirmed by metrical parameters. Conversely, oxidation of pentavalent 2-Cp* with AgSbF6 affords cationic [Cp*U(NPh)2(MesPDIMe)][SbF6] (5-Cp*) from a metal-based U(V)/U(VI) oxidation. All complexes have been characterized by multidimensional NMR spectroscopy with assignments confirmed by electronic absorption spectroscopy. The effective nuclear charge at uranium has been probed using X-ray absorption spectroscopy, while structural parameters of 1-CpP, 3-Cp*, 3-tBu, 4-Cp*, 4-tBu, and 5-Cp* have been elucidated by X-ray crystallography.
Nature Communications | 2016
Maryline G. Ferrier; Enrique R. Batista; John M. Berg; Eva R. Birnbaum; Justin N. Cross; Jonathan W. Engle; Henry S. La Pierre; Stosh A. Kozimor; Juan S. Lezama Pacheco; Benjamin W. Stein; S. Chantal E. Stieber; Justin J. Wilson
Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.
Inorganic Chemistry | 2017
Feng Li; Stephanie H. Carpenter; Robert F. Higgins; Mark G. Hitt; William W. Brennessel; Maryline G. Ferrier; Samantha K. Cary; Juan S. Lezama-Pacheco; Joshua T. Wright; Benjamin W. Stein; Matthew P. Shores; Michael L. Neidig; Stosh A. Kozimor; Ellen M. Matson
Inspired by the multielectron redox chemistry achieved using conventional organic-based redox-active ligands, we have characterized a series of iron-functionalized polyoxovanadate-alkoxide clusters in which the metal oxide scaffold functions as a three-dimensional, electron-deficient metalloligand. Four heterometallic clusters were prepared through sequential reduction, demonstrating that the metal oxide scaffold is capable of storing up to four electrons. These reduced products were characterized by cyclic voltammetry, IR, electronic absorption, and 1H NMR spectroscopies. Moreover, Mössbauer and X-ray absorption spectroscopies suggest that the redox events involve primarily the vanadium ions, while the iron atoms remained in the 3+ oxidation state throughout the redox series. In this sense, the vanadium portion of the cluster mimics a conventional organic-based redox-active ligand bound to an iron(III) ion. Magnetic coupling within the hexanuclear cluster was characterized using SQUID magnetometry. Overall, the results suggest extensive electronic delocalization between the metal centers of the cluster core. These results demonstrate the ability of electronically flexible, reducible metal oxide supports to function as redox-active reservoirs for transition-metal centers.
Angewandte Chemie | 2016
Subrata Kundu; S. Chantal E. Stieber; Maryline G. Ferrier; Stosh A. Kozimor; Jeffery A. Bertke; Timothy H. Warren
Nitrosobenzene (PhNO) serves as a stable analogue of nitroxyl (HNO), a biologically relevant, redox-active nitric oxide derivative. Capture of nitrosobenzene at the electron-deficient β-diketiminato nickel(I) complex [(i) Pr2 NNF6 ]Ni results in reduction of the PhNO ligand to a (PhNO)(./-) species coordinated to a square planar Ni(II) center in [(i) Pr2 NNF6 ]Ni(η(2) -ONPh). Ligand centered reduction leads to the (PhNO)(2-) moiety bound to Ni(II) supported by XAS studies. Systematic investigation of structure-reactivity patterns of (PhNO)(./-) and (PhNO)(2-) ligands reveals parallels with superoxo (O2 )(./-) and peroxo (O2 )(2-) ligands, respectively, and forecasts reactivity patterns of the more transient HNO ligand.
Angewandte Chemie | 2016
Justin N. Cross; Joseph A. Macor; Jeffery A. Bertke; Maryline G. Ferrier; Gregory S. Girolami; Stosh A. Kozimor; Joel R. Maassen; Brian L. Scott; David K. Shuh; Benjamin W. Stein; S. Chantal E. Stieber
Advancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Herein, we describe the preparation of (NBu4 )Am[S2 P((t) Bu2 C12 H6 )]4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e., Nd(III) ) and an isoelectronic one (Eu(III) ). The results include the first measurement of an Am-S bond length, with a mean value of 2.921(9) Å, by single-crystal X-ray diffraction. Comparison with the Eu(III) and Nd(III) complexes revealed subtle electronic differences between the complexes of Am(III) and the lanthanides.
ACS central science | 2017
Maryline G. Ferrier; Benjamin W. Stein; Enrique R. Batista; John M. Berg; Eva R. Birnbaum; Jonathan W. Engle; Kevin D. John; Stosh A. Kozimor; Juan S. Lezama Pacheco; Lindsay N. Redman
Metal aquo ions occupy central roles in all equilibria that define metal complexation in natural environments. These complexes are used to establish thermodynamic metrics (i.e., stability constants) for predicting metal binding, which are essential for defining critical parameters associated with aqueous speciation, metal chelation, in vivo transport, and so on. As such, establishing the fundamental chemistry of the actinium(III) aquo ion (Ac-aquo ion, Ac(H2O)x3+) is critical for current efforts to develop 225Ac [t1/2 = 10.0(1) d] as a targeted anticancer therapeutic agent. However, given the limited amount of actinium available for study and its high radioactivity, many aspects of actinium chemistry remain poorly defined. We overcame these challenges using the longer-lived 227Ac [t1/2 = 21.772(3) y] isotope and report the first characterization of this fundamentally important Ac-aquo coordination complex. Our X-ray absorption fine structure study revealed 10.9 ± 0.5 water molecules directly coordinated to the AcIII cation with an Ac–OH2O distance of 2.63(1) Å. This experimentally determined distance was consistent with molecular dynamics density functional theory results that showed (over the course of 8 ps) that AcIII was coordinated by 9 water molecules with Ac–OH2O distances ranging from 2.61 to 2.76 Å. The data is presented in the context of other actinide(III) and lanthanide(III) aquo ions characterized by XAFS and highlights the uniqueness of the large AcIII coordination numbers and long Ac–OH2O bond distances.
Inorganic Chemistry | 2016
Samantha K. Cary; Maryline G. Ferrier; R. E. Baumbach; Mark A. Silver; Juan S. Lezama Pacheco; Stosh A. Kozimor; Henry S. La Pierre; Benjamin W. Stein; Alexandra A. Arico; Danielle L. Gray; Thomas E. Albrecht-Schmitt
The reaction of Ce(III) or Pu(III) with 1,10-phenanthroline-2,9-dicarboxylic acid (PDAH2) results in the formation of new f-element coordination complexes. In the case of cerium, Ce(PDA)(H2O)2Cl·H2O (1) or [Ce(PDAH)(PDA)]2[Ce(PDAH)(PDA)] (2) was isolated depending on the Ce/ligand ratio in the reaction. The structure of 2 is composed of two distinct substructures that are constructed from the same monomer. This monomer is composed of a Ce(III) cation bound by one PDA(2-) dianionic ligand and one PDAH(-) monoanionic ligand, both of which are tetradentate. Bridging by the carboxylate moieties leads to either [Ce(PDAH)(PDA)]2 dimers or [Ce(PDAH)(PDA)]1∞ helical chains. For plutonium, Pu(PDA)2 (3) was the only product isolated regardless of the Pu/ligand ratio employed in the reaction. During the reaction of plutonium with PDAH2, Pu(III) is oxidized to Pu(IV), generating 3. This assignment is consistent with structural metrics and the optical absorption spectrum. Ambiguity in the assignment of the oxidation state of cerium in 1 and 2 from UV-vis-near-IR spectra invoked the use of Ce L3,2-edge X-ray absorption near-edge spectroscopy, magnetic susceptibility, and heat capacity measurements. These experiments support the assignment of Ce(III) in both compounds. The bond distances and coordination numbers are also consistent with these assignments. 3 contains 8-coordinate Pu(IV), whereas the cerium centers in 1 and 2 are 9- and/or 10-coordinate, which correlates with the increased size of Ce(III) versus Pu(IV). Taken together, these data provide an example of a system where the differences in the redox behavior between these f elements creates more complex chemistry with cerium than with plutonium.
Inorganic Chemistry | 2018
Samantha K. Cary; Maksim Y. Livshits; Justin N. Cross; Maryline G. Ferrier; Veronika Mocko; Benjamin W. Stein; Stosh A. Kozimor; Brian L. Scott; Jeffrey J. Rack
Thenoyltrifluoroacetone (HTTA)-based extractions represent popular methods for separating microscopic amounts of transuranic actinides (i.e., Np and Pu) from macroscopic actinide matrixes (e.g. bulk uranium). It is well-established that this procedure enables +4 actinides to be selectively removed from +3, + 5, and +6 f-elements. However, even highly skilled and well-trained researchers find this process complicated and (at times) unpredictable. It is difficult to improve the HTTA extraction-or find alternatives-because little is understood about why this separation works. Even the identities of the extracted species are unknown. In addressing this knowledge gap, we report here advances in fundamental understanding of the HTTA-based extraction. This effort included comparatively evaluating HTTA complexation with +4 and +3 metals (MIV = Zr, Hf, Ce, Th, U, Np, and Pu vs MIII = Ce, Nd, Sm, and Yb). We observed +4 metals formed neutral complexes of the general formula MIV(TTA)4. Meanwhile, +3 metals formed anionic MIII(TTA)4- species. Characterization of these M(TTA)4x- ( x = 0, 1) compounds by UV-vis-NIR, IR, 1H and 19F NMR, single-crystal X-ray diffraction, and X-ray absorption spectroscopy (both near-edge and extended fine structure) was critical for determining that NpIV(TTA)4 and PuIV(TTA)4 were the primary species extracted by HTTA. Furthermore, this information lays the foundation to begin developing and understanding of why the HTTA extraction works so well. The data suggest that the solubility differences between MIV(TTA)4 and MIII(TTA)4- are likely a major contributor to the selectivity of HTTA extractions for +4 cations over +3 metals. Moreover, these results will enable future studies focused on explaining HTTA extractions preference for +4 cations, which increases from Np IV to PuIV, HfIV, and ZrIV.
Inorganic Chemistry | 2018
Scott A. Pattenaude; Kimberly C. Mullane; Eric J. Schelter; Maryline G. Ferrier; Benjamin W. Stein; Sharon E. Bone; Juan S. Lezama Pacheco; Stosh A. Kozimor; Phillip E. Fanwick; Matthias Zeller; Suzanne C. Bart
Uranium complexes (MesDAE)2U(THF) (1-DAE) and Cp2U(MesDAE) (2-DAE) (MesDAE = [ArN-CH2CH2-NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), bearing redox-innocent diamide ligands, have been synthesized and characterized for a full comparison with previously published, redox-active diimine complexes, (MesDABMe)2U(THF) (1-DAB) and Cp2U(MesDABMe) (2-DAB) (MesDABMe = [ArN═C(Me)C(Me)═NAr]; Ar = Mes). These redox-innocent analogues maintain an analogous steric environment to their redox-active ligand counterparts to facilitate a study aimed at determining the differing electronic behavior around the uranium center. Structural analysis by X-ray crystallography showed 1-DAE and 2-DAE have a structural environment very similar to 1-DAB and 2-DAB, respectively. The main difference occurs with coordination of the ene-backbone to the uranium center in the latter species. Electronic absorption spectroscopy reveals these new DAE complexes are nearly identical to each other. X-ray absorption spectroscopy suggests all four species contain +4 uranium ions. The data also indicates that there is an electronic difference between the bis(diamide)-THF uranium complexes as opposed to those that only contain one diamide and two cyclopentadienyl rings. Finally, magnetic measurements reveal that all complexes display temperature-dependent behavior consistent with uranium(IV) ions that do not include ligand radicals. Overall, this study determines that there is no significant bonding difference between the redox-innocent and redox-active ligand frameworks on uranium. Furthermore, there are no data to suggest covalent bonding character using the latter ligand framework on uranium, despite what is known for transition metals.
Inorganic Chemistry | 2018
Aaron M. Tondreau; Thomas J. Duignan; Benjamin W. Stein; Valerie E. Fleischauer; Jochen Autschbach; Enrique R. Batista; James M. Boncella; Maryline G. Ferrier; Stosh A. Kozimor; Veronika Mocko; Michael L. Neidig; Samantha K. Cary; Ping Yang
A series of uranium amides were synthesized from N, N, N-cyclohexyl(trimethylsilyl)lithium amide [Li][N(TMS)Cy] and uranium tetrachloride to give U(NCySiMe3) x(Cl)4- x, where x = 2, 3, or 4. The diamide was isolated as a bimetallic, bridging lithium chloride adduct ((UCl2(NCyTMS)2)2-LiCl(THF)2), and the tris(amide) was isolated as the lithium chloride adduct of the monometallic species (UCl(NCyTMS)3-LiCl(THF)2). The tetraamide complex was isolated as the four-coordinate pseudotetrahedron. Cyclic voltammetry revealed an easily accessible reversible oxidation wave, and upon chemical oxidation, the UV amido cation was isolated in near-quantitative yields. The synthesis of this family of compounds allows a direct comparison of the electronic structure and properties of isostructural UIV and UV tetraamide complexes. Spectroscopic investigations consisting of UV-vis, NIR, MCD, EPR, and U L3-edge XANES, along with density functional and wave function calculations, of the four-coordinate UIV and UV complexes have been used to understand the electronic structure of these pseudotetrahedral complexes.