Maryline J. Vautravers
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maryline J. Vautravers.
Paleoceanography | 2003
Uwe Pflaumann; Michael Sarnthein; Mark R. Chapman; L. d'Abreu; Brian M Funnell; M. Huels; Thorsten Kiefer; Mark A. Maslin; Hartmut Schulz; John Swallow; S. van Kreveld; Maryline J. Vautravers; Elke Vogelsang; Mara Weinelt
The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45degrees and 60degreesN, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12degreesC. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by CLIMAP Project Members (CLIMAP) [1981]. The zonal belt of minimum SST seasonality between 2degrees and 6degreesN suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6degrees-8degreesC during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37(k)- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.
Quaternary Science Reviews | 2002
Olivier Marchal; Isabel Cacho; Thomas F. Stocker; Joan O. Grimalt; Eva María Calvo; Belen Martrat; Nicholas J Shackleton; Maryline J. Vautravers; Elsa Cortijo; Shirley A van Kreveld; Carin Andersson; Nalan Koc; Mark R. Chapman; Laura Sbaffi; Jean-Claude Duplessy; Michael Sarnthein; Jean-Louis Turon; Josette Duprat; Eystein Jansen
Reconstructions of upper ocean temperature (T) during the Holocene (10–0 ka B.P.) were established using the alkenone method from seven, high accumulation sediment cores raised from the northeast Atlantic and the Mediterranean Sea (361N–751N). All these paleo-T records document an apparent long-term cooling during the last 10 kyr. In records with indication of a constant trend, the apparent cooling ranges from � 0.27 to � 0.151C kyr � 1 . Records with indication of time-variable trend show peak-to-peak amplitudes in apparent temperatures of 1.2–2.91C. A principal component analysis shows that there is one factor which accounts for a very large fraction (67%) of the total variance in the biomarker paleo-T records and which dominates these records over other potential secondary influences. Two possible contributions are (1) a widespread surface cooling, which may be associated with the transition fromthe Hypsithermal interval ( B9–5.7 ka B.P.) to the Neoglaciation (B5.7–0 ka B.P.); and (2) a change in the seasonal timing and/or duration of the growth period of alkenone producers (prymnesiophyte algae). The first contribution is consistent with many climate proxy records from the northeast Atlantic area and with climate model simulations including Milankovitch forcing. The second contribution is consistent with the divergence between biomarker and summer faunal paleo-T fromearly to late Holocene observed in two cores. Further work is necessary, and in particular the apparent discordance between biomarker and faunal T records for the relative stable Holocene period must be understood, to better constrain the climatic and ecological contributions to the apparent cooling observed in the former records. r 2002 Elsevier Science Ltd. All rights reserved.
Geochemistry Geophysics Geosystems | 2002
Henry Elderfield; Maryline J. Vautravers
The relationship between shell size and Mg/Ca, Sr/Ca, ?18O, and ?13C of planktonic foraminiferal calcite has been investigated using seventeen species in six different size fractions. Mg/Ca increases and Sr/Ca decreases with increasing size, except for two globorotaliid species which show the opposite trend. The changes in Mg/Ca broadly follow ?18O calcification temperatures except that surface and near-surface dwelling species show larger changes in Mg/Ca than can be accounted for by differences in calcification temperature derived from ?18O. The increases in Mg/Ca and decreases in Sr/Ca vary linearly with the well-established increase in ?13C with size. This is consistent with smaller individuals calcifying faster than larger individuals and larger individuals forming calcite that more closely reflects seawater temperature and composition. It appears that variations in calcification rate affect Mg and Sr shell chemistry. The observations may account for part of the temporal variability in foraminiferal Sr/Ca within a single size fraction that has been attributed to changes in seawater Sr/Ca.
Earth and Planetary Science Letters | 1997
Elsa Cortijo; Laurent Labeyrie; Laurence Vidal; Maryline J. Vautravers; Mark R Chapman; Jean-Claude Duplessy; Mary Elliot; Maurice Arnold; Jean-Louis Turon; Gérard Auffret
Abstract The changes in distribution of sea surface temperature and salinity in the North Atlantic between 40 and 60°N were reconstructed for the time interval between 40 and 30 kyr BP, which includes the large iceberg discharge event associated with the deposition of Heinrich layer 4. We found that the meltwater input during deposition of Heinrich layer 4 resulted in a 1–2 kyr temperature decrease of about 2°C and a salinity decrease in the range of 1.5‰–3.5‰ between 40 and 50°N. Sites above 50°N did not experience significant salinity variations. A much larger area was affected by the reduction in sea surface temperature. The amplitude of the sea surface temperature shift was, however, much smaller than the atmospheric temperature changes over Greenland at GISP and GRIP sites.
Nature | 2006
Matthew W. Schmidt; Maryline J. Vautravers; Howard J. Spero
Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard–Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean–atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard–Oeschger cycles (spanning 45.9–59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.
Paleoceanography | 1999
Martine Paterne; Nejib Kallel; Laurent Labeyrie; Maryline J. Vautravers; Jean-Claude Duplessy; Martine Rossignol-Strick; Elsa Cortijo; Maurice Arnold; Michel Fontugne
The Mediterranean Sea hydrology at the time of the Heinrich formation in the North Atlantic Ocean was analyzed by comparing sea surface temperatures (SSTs) and oxygen isotope composition of seawater (δw) changes during the past 75 kyr in two marine cores. These were compared to the palynological variations derived in the Mediterranean Sea core. During the last glacial the two oceanic SST records show similar and synchronous patterns, with several long-term cooling periods, ending by abrupt SST increases. At the time of the Heinrich events, cold SSTs and low salinity prevailed in the Mediterranean Sea. The freshwater budget was similar to the modern one, permitting the presence of a mixed forest on the Mediterranean borderlands. The post-Heinrich periods are marked by a freshwater budget decrease, limiting oak and fir tree growth in the Mediterranean region. Increase of precipitation or reduction of evaporation is observed before the Heinrich episode, and is associated with a well-developed mixed Mediterranean forest.
Paleoceanography | 2004
Maryline J. Vautravers; N.J. Shackleton; Constancia López-Martínez; Joan O. Grimalt
We have studied Ocean Drilling Program Site 1060 on the Blake Outer Ridge, which lies beneath the Gulf Stream. We focus on marine isotope stage 3, 60–25 thousand years before present (ka). Sea surface temperatures (SSTs) inferred both from foraminiferal fauna and alkenone ratios, as well as counts of iceberg melt-out debris and benthic stable isotope analyses, enable our record to be interpreted in terms of regional hydrographic changes as well as changing thermohaline circulation (THC). The observed SST record is consistent with the air temperature record from the Greenland ice cores. However, Site 1060 exhibits important differences in detail compared with the ice core record, and when compared to other sites within the North Atlantic, significant longitudinal differences emerge. At Site 1060 in the western Atlantic, all Greenland stadials (GS) whether associated with Heinrich events (HEs) or not, show a similar small amplitude of cooling; mean faunal-based SSTaug during GS is only 1.5°C colder than during Greenland interstadials (GIS). In addition, during GS the coldest SSTs are limited to apparently brief events. This is in contrast to several eastern Atlantic sites where HE stadials exhibit coolings that are enhanced by 2°C compared to other GS and where cold conditions are not restricted to cold pulses but cover 2 ka-long intervals. Furthermore, Site 1060 SSTs remained warm right through each interstadial, in contrast to the sustained and uniform cooling trend through interstadials that is consistently observed in Greenland, indicated by measurements of δ18O in ice.
Paleoceanography | 2006
Maryline J. Vautravers; Nicholas J Shackleton
[1] The marine isotopic stage 3 (MIS3) at Ocean Drilling Program (ODP) Site 1060 (Gulf Stream) shows both sharp onset and end of interstadials, the existence of very short lived warm events during stadials, and points to differences in detail between the sea surface temperature (SST) record from the western North Atlantic and the atmospheric temperature record inferred from δ18O in Greenland ice. Investigating MIS3 and obtaining comparable data from other locations appears crucial. The eastern Atlantic provides well-documented records of climate changes. We have selected a core from off Portugal and use it to examine Dansgaard/Oeschger events (D/O) at centennial-scale resolution (139 years on average between two data points). We have obtained a faunal data set for core MD01-2444, 37°N, 10°W, 2600 m water depth and use a group of species (Globigerina bulloides + Globigerinita glutinata) as a proxy of upwelling intensity driven by trade winds intensity changes. We tentatively relate the variation of this group to a North Atlantic Oscillation-like phenomenon (NAO) off Portugal. We observe that it resembles the rainfall index in the Caribbean as recorded at ODP Site 1002 (Cariaco Basin) which traces the Intertropical Convergence Zone (ITCZ) location through changes of terrigenous inputs. The driest intervals (ITZC to the south) at Site 1002 correspond to intervals of increased upwelling in MD01-2444 as well as the driest periods identified during stadials on similar cores in the area. Because the ITZC to the south is consistent with an El Nino–Southern Oscillation (ENSO+) situation, our study suggests a positive correlation between ENSO-like conditions and NAO-like conditions at a millennial timescale. During interstadial intervals when increased wetness over Cariaco is recorded (ITCZ to the north) and the upwelling in MD01-2444 is decreased, we see from both SSTs and faunal tropical indicators that MD01-2444 site is warm. In addition, interstadials are equally warm through each so-called Bond cycle. This contrasts with the Greenland Ice Core Project (GRIP) record where interstadial peaks are successively cooler through each Bond cycle. This record confirms a link between tropical climate linked to ITCZ position and the climate of southern Europe at millennial timescales, in spite of showing a very good correlation with polar latitudes (GRIP) through δ18O on Globigerina bulloides. In addition, because the warmest SSTs and the δ18O on G. bulloides are so remarkably different, our work points to changes in seasonality as a strong control over the climatic pattern of the North Atlantic area and the marked influence of winter conditions.
Geological Society, London, Special Publications | 2013
Maryline J. Vautravers; David A. Hodell; James E T Channell; Claus-Dieter Hillenbrand; Mike A. Hall; James A. Smith; Robert D Larter
Abstract We present results of a multi-proxy study on marine sediment core JR179-PC466 recovered from the crest of a sediment drift off the West Antarctic Peninsula at approximately 2300 m water depth. The 10.45 m-long core consists dominantly of glaciomarine terrigenous sediments, with only traces of calcium carbonate (<1 wt%). Despite the very low abundance of calcareous foraminifera, planktonic shell numbers are sufficient for stable isotope analyses in two-thirds of the samples studied. The core chronology is based on oxygen isotope stratigraphy and correlation of its relative palaeomagnetic intensity (RPI) with a stacked reference curve. According to the age model, core PC466 spans the last 75 ka, with average sedimentation rates of between about 4 and 25 cm ka−1. Planktonic foraminifera abundances fluctuate between 0 and 30 individuals per gram throughout the core, with minima observed during Marine Isotope Stage (MIS) 2 (14–29 ka before present, BP) and MIS4 (57–71 ka BP). Planktonic foraminifera are present in the Holocene but more abundant in sediments deposited during MIS3 (29–57 ka BP), owing to less dilution by terrigenous detritus and/or better carbonate preservation. During MIS3, foraminifera maxima correlate with Antarctic warming events as recorded in the δ18O signal of the EPICA Dronning Maud Land (EDML) ice core. They indicate higher planktonic foraminifera production and better carbonate preservation west of the Antarctic Peninsula during that time. The abundance of ice-rafted detritus (IRD) in core PC466 increased during the last deglaciation between about 19 and 11 ka BP, when numerous icebergs drifted across the core site, thereby releasing IRD. During this time, sea-level rise destabilized the Antarctic Peninsula (APIS) and West Antarctic (WAIS) ice sheets that had advanced onto the shelf during the sea-level low-stand of the Last Glacial Maximum (LGM; c. 19–23 ka BP). Overall, our results demonstrate that it is possible to establish an age model and reconstruct palaeoceanographical and climatic changes at high temporal resolution from sedimentary sequences recovered at 2300 m water depth from a West Antarctic drift.
Geochemistry Geophysics Geosystems | 2006
Matthew W. Schmidt; Maryline J. Vautravers; Howard J. Spero