Maryse Lebrun
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maryse Lebrun.
PLOS Pathogens | 2009
Sébastien Besteiro; Adeline Michelin; Joël Poncet; Jean-François Dubremetz; Maryse Lebrun
One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.
PLOS Pathogens | 2011
Mauld M Lamarque; Sébastien Besteiro; Julien Papoin; Magali Roques; Brigitte Vulliez-Le Normand; Juliette Morlon-Guyot; Jean-François Dubremetz; Sylvain Fauquenoy; Stanislas Tomavo; Bart Bw Faber; Clemens Ch Kocken; Alan W. Thomas; Martin J. Boulanger; Graham Ga Bentley; Maryse Lebrun
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.
Cellular Microbiology | 2005
Maryse Lebrun; Adeline Michelin; Hiba El Hajj; Joël Poncet; Peter J. Bradley; Henri Vial; Jean François Dubremetz
Host cell invasion in the Apicomplexa is unique in its dependency on a parasite actin‐driven machinery and in the exclusion of most host cell membrane proteins during parasitophorous vacuole (PV) formation. This exclusion occurs at a junction between host cell and parasite plasma membranes that has been called the moving junction, a circumferential zone which forms at the apical tip of the parasite, moves backward and eventually pinches the PV from the host cell membrane. Despite having been described by electron microscopic studies 30 years ago, the molecular nature of this singular structure is still enigmatic. We have obtained a monoclonal antibody that recognizes the moving junction of invading tachyzoites of Toxoplasma gondii, in a pattern clearly distinct from those described so far for microneme and rhoptry proteins. The protein recognized by this antibody has been affinity purified. Mass spectrometry analysis showed that it is a rhoptry neck protein (RON4), a hypothetical protein with homologues restricted to Apicomplexa. Our findings reveals for the first time the participation of rhoptry neck proteins in moving junction formation and strongly suggest the conservation of this structure at the molecular level among Apicomplexa.
PLOS Pathogens | 2007
Hiba El Hajj; Maryse Lebrun; Stefan T. Arold; Henri J. Vial; Gilles Labesse; Jean François Dubremetz
Toxoplasma gondii is an obligate intracellular parasite for which the discharge of apical organelles named rhoptries is a key event in host cell invasion. Among rhoptry proteins, ROP2, which is the prototype of a large protein family, is translocated in the parasitophorous vacuole membrane during invasion. The ROP2 family members are related to protein-kinases, but only some of them are predicted to be catalytically active, and none of the latter has been characterized so far. We show here that ROP18, a member of the ROP2 family, is located in the rhoptries and re-localises at the parasitophorous vacuole membrane during invasion. We demonstrate that a recombinant ROP18 catalytic domain (amino acids 243–539) possesses a protein-kinase activity and phosphorylate parasitic substrates, especially a 70-kDa protein of tachyzoites. Furthermore, we show that overexpression of ROP18 in transgenic parasites causes a dramatic increase in intra-vacuolar parasite multiplication rate, which is correlated with kinase activity. Therefore, we demonstrate, to our knowledge for the first time, that rhoptries can discharge active protein-kinases upon host cell invasion, which can exert a long-lasting effect on intracellular parasite development and virulence.
Cellular Microbiology | 2011
Sébastien Besteiro; Jean-François Dubremetz; Maryse Lebrun
Most Apicomplexa are obligate intracellular parasites and many are important pathogens of human and domestic animals. For a successful cell invasion, they rely on their own motility and on a firm anchorage to their host cell, depending on the secretion of proteins and the establishment of a structure called the moving junction (MJ). The MJ moves from the apical to the posterior end of the parasite, leading to the internalization of the parasite into a parasitophorous vacuole. Based on recent data obtained in Plasmodium and Toxoplasma, an emerging model emphasizes a cooperative role of secreted parasitic proteins in building the MJ and driving this crucial invasive process. More precisely, the parasite exports the microneme protein AMA1 to its own surface and the rhoptry neck RON2 protein as a receptor inserted into the host cell together with other RON partners. Ongoing and future research will certainly help refining the model by characterizing the molecular organization within the MJ and its interactions with both host and parasite cytoskeleton for anchoring of the complex.
Science | 2011
Michelle L. Tonkin; Magali Roques; Mauld H. Lamarque; Martine Pugnière; Dominique Douguet; Joanna Crawford; Maryse Lebrun; Martin J. Boulanger
The structure of a eukaryotic pathogen adhesin bound to its receptor provides a basis for design of therapeutics. Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite–host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.
Journal of Experimental Medicine | 2005
Odile Cérède; Jean François Dubremetz; Martine Soête; Didier Deslée; Henri Vial; Daniel Bout; Maryse Lebrun
Apicomplexan parasites invade cells by a unique mechanism involving discharge of secretory vesicles called micronemes. Microneme proteins (MICs) include transmembrane and soluble proteins expressing different adhesive domains. Although the transmembrane protein TRAP and its homologues are thought to bridge cell surface receptors and the parasite submembranous motor, little is known about the function of other MICs. We have addressed the role of MIC1 and MIC3, two soluble adhesins of Toxoplasma gondii, in invasion and virulence. Single deletion of the MIC1 gene decreased invasion in fibroblasts, whereas MIC3 deletion had no effect either alone or in the mic1KO context. Individual disruption of MIC1 or MIC3 genes slightly reduced virulence in the mouse, whereas doubly depleted parasites were severely impaired in virulence and conferred protection against subsequent challenge. Single substitution of two critical amino acids in the chitin binding–like (CBL) domain of MIC3 abolished MIC3 binding to cells and generated the attenuated virulence phenotype. Our findings identify the CBL domain of MIC3 as a key player in toxoplasmosis and reveal the synergistic role of MICs in virulence, supporting the idea that parasites have evolved multiple ligand–receptor interactions to ensure invasion of different cells types during the course of infection.
Cellular Microbiology | 2000
Nathalie Garcia-Réguet; Maryse Lebrun; Marie Noëlle Fourmaux; Odile Mercereau-Puijalon; Tara Mann; Cornelius J M Beckers; Bart Samyn; Jozef Van Beeumen; Daniel Bout; Jean François Dubremetz
Assay of the adhesion of cultured cells on Toxoplasma gondii tachyzoite protein Western blots identified a major adhesive protein, that migrated at 90 kDa in non‐reducing gels. This band comigrated with the previously described microneme protein MIC3. Cellular binding on Western blots was abolished by MIC3‐specific monoclonal and polyclonal antibodies. The MIC3 protein affinity purified from tachyzoite lysates bound to the surface of putative host cells. In addition, T. gondii tachyzoites also bound to immobilized MIC3. Immunofluorescence analysis of T. gondii tachyzoite invasion showed that MIC3 was exocytosed and relocalized to the surface of the parasite during invasion. The cDNA encoding MIC3 and the corresponding gene have been cloned, allowing the determination of the complete coding sequence. The MIC3 sequence has been confirmed by affinity purification of the native protein and N‐terminal sequencing. The deduced protein sequence contains five partially overlapping EGF‐like domains and a chitin binding‐like domain, which can be involved in protein–protein or protein–carbohydrate interactions. Taken together, these results suggest that MIC3 is a new microneme adhesin of T. gondii.
Molecular Microbiology | 1996
Maryse Lebrun; J Mengaud; Hélène Ohayon; Farida Nato; Pascale Cossart
Entry of Listeria monocytogenes into cultured epithelial cells requires production of internalin, a protein with features characteristic of some Gram‐positive bacterial surface proteins, in particular an LPXTG motif preceding a hydrophobic sequence and a few basic residues at its C‐terminal end. By immunofluorescence and immunogold labelling, we show that in wild‐type L. monocytogenes, internalin is present on the cell surface and has a polarized distribution similar to that of ActA, another surface protein of L. monocytogenes involved in actin assembly. Through a genetic analysis, we establish that the C‐terminal region of internalin is necessary for cell‐surface association, and that although internalin is partially released in the culture medium, its location on the bacterial surface is required to promote entry. Finally, using a‘domain‐swapping’strategy ‐ replacement of the cell wall anchor of InIA by the membrane anchor of ActA ‐ we show that the reduced ability to adhere and enter cells of strains expressing InIA‐ActA correlates with a lower amount of surface‐exposed internalin. Taken together, these results suggest that internalin exposed on the bacterial surface mediates direct contact between the bacterium and the host cell.
PLOS Pathogens | 2012
Brigitte Vulliez-Le Normand; Michelle L. Tonkin; Mauld H. Lamarque; Susann Langer; Sylviane Hoos; Magali Roques; Frederick A. Saul; Bart W. Faber; Graham A. Bentley; Martin J. Boulanger; Maryse Lebrun
Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.