Maryse Romao
Curie Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maryse Romao.
Current Biology | 2009
Vandhana Muralidharan-Chari; James Clancy; Carolyn Plou; Maryse Romao; Philippe Chavrier; Graça Raposo; Crislyn D'Souza-Schorey
BACKGROUND Increased mitogen-activated protein kinase (MAPK) signaling, small GTPase activation, cytoskeletal rearrangements, and the directed targeting of proteases to sites of extracellular matrix degradation all accompany the process of tumor cell invasion. Several studies have implicated the small GTP-binding protein ARF6 in tumor cell invasion, although the molecular basis by which ARF6 facilitates this process is unclear. RESULTS We show that the ARF6 GTP/GDP cycle regulates the release of protease-loaded plasma membrane-derived microvesicles from tumor cells into the surrounding environment. To enable microvesicle shedding, ARF6-GTP-dependent activation of phospholipase D promotes the recruitment of the extracellular signal-regulated kinase (ERK) to the plasma membrane where, in turn, ERK phosphorylates and activates myosin light-chain kinase (MLCK). MLCK-mediated MLC phosphorylation is required for microvesicle release. Inhibition of ARF6 activation is accompanied by PKC-mediated phosphorylation of MLC, which blocks microvesicle shedding. Protein cargo appears to be selectively sorted into microvesicles, and adhesion to the extracellular matrix (ECM) is facilitated by microvesicle-associated integrin receptors. CONCLUSIONS Microvesicle shedding in tumor cells occurs via an actomyosin-based membrane abscission mechanism that is regulated by nucleotide cycling on ARF6. Microvesicle shedding appears to release selected cellular components, particularly those involved in cell adhesion and motility, into the surrounding environment. These findings suggest that ARF6 activation and the proteolytic activities of microvesicles, both of which are thought to correlate directly with tumor progression, could potentially serve as biomarkers for disease.
Developmental Cell | 2011
Guillaume van Niel; Sabrina Simoes; Maryse Romao; Leila Rochin; Paul Saftig; Michael S. Marks; Eric Rubinstein; Graça Raposo
Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for lysosome-related organelle (LRO) biogenesis. PMEL-a component of melanocyte LROs (melanosomes)-is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis.
European Journal of Immunology | 2005
Cédric Brossard; Vincent Feuillet; Alain Schmitt; Clotilde Randriamampita; Maryse Romao; Graça Raposo; Alain Trautmann
The structure of immunological synapses formed between murine naive T cells and mature dendritic cells has been subjected to a quantitative analysis. Immunofluorescence images of synapses formed in the absence of antigen show a diffuse synaptic accumulation of CD3 and LFA‐1. In electron microscopy, these antigen‐free synapses present a number of tight appositions (cleft size ∼15 nm), all along the synapse. These tight appositions cover a significantly larger surface fraction of antigen‐dependent synapses. In immunofluorescence, antigen‐dependent synapses show multiple patches of CD3 and LFA‐1 with a variable overlap. A similar distribution is observed for PKCθ and talin. A concentric organization characteristic of prototypical synapses is rarely observed, even when dendritic cells are paralyzed by cytoskeletal poisons. In T–DC synapses, the interaction surface is composed of several tens of submicronic contact spots, with no large‐scale segregation of CD3 and LFA‐1. As a comparison, in T–B synapses, a central cluster of CD3 is frequently observed by immunofluorescence, and electron microscopy reveals a central tight apposition. Our data show that it is inappropriate to consider the concentric structure as a “mature synapse” and multifocal structures as immature.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Renaud Poincloux; Olivier Collin; Floria Lizárraga; Maryse Romao; Marcel Debray; Matthieu Piel; Philippe Chavrier
Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or β1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the β1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement.
Cancer Research | 2009
Floria Lizárraga; Renaud Poincloux; Maryse Romao; Guillaume Montagnac; Gaëlle Le Dez; Isabelle Bonne; Guillem Rigaill; Graça Raposo; Philippe Chavrier
Proteolytic degradation of the extracellular matrix by metastatic tumor cells is initiated by the formation of invadopodia, i.e., actin-driven filopodia-like membrane protrusions endowed with matrix-degradative activity. A signaling cascade involving neural Wiskott-Aldrich syndrome protein and the Arp2/3 actin nucleating complex is involved in actin assembly at invadopodia. Yet, the mechanism of invadopodia formation is poorly understood. Based on their role as actin nucleators in cytoskeletal rearrangements, including filopodia formation, we examined the function of Diaphanous-related formins (DRF) in invadopodia formation and invasion by breast tumor cells. Using small interfering RNA silencing of protein expression in highly invasive MDA-MB-231 breast adenocarcinoma cells, we show that three members of the DRF family (DRF1-DRF3) are required for invadopodia formation and two-dimensional matrix proteolysis. We also report that invasion of a three-dimensional Matrigel matrix involves filopodia-like protrusions enriched for invadopodial proteins, including membrane type 1 matrix metalloproteinase, which depend on DRFs for their formation. These data identify DRFs as critical components of the invasive apparatus of tumor cells in two-dimensional and three-dimensional matrices and suggest that different types of actin nucleators cooperate during the formation of invadopodia.
Traffic | 2007
Kouichi Mizuno; Tanya Tolmachova; Dmitry S. Ushakov; Maryse Romao; Magnus Åbrink; Michael A. Ferenczi; Gracxa Raposo; Miguel C. Seabra
The Rab GTPase family regulates membrane domain organization and vesicular transport pathways. Recent studies indicate that one member of the family, Rab27a, regulates transport of lysosome‐related organelles in specialized cells, such as melanosomes and lytic granules. Very little is known about the related isoform, Rab27b. Here we used genetically modified mice to study the involvement of the Rab27 proteins in mast cells, which play key roles in allergic responses. Both Rab27a and Rab27b isoforms are expressed in bone marrow‐derived mast cells (BMMC) and localize to secretory granules. Nevertheless, secretory defects as measured by β‐hexosaminidase release in vitroand passive cutaneous anaphylaxis in vivowere found only in Rab27b and double Rab27 knockout (KO) mice. Immunofluorescence studies suggest that a subset of Rab27b and double Rab27‐deficient BMMCs exhibit mild clustering of granules. Quantitative analysis of live‐cell time‐lapse imaging revealed that BMMCs derived from double Rab27 KO mice showed almost 10‐fold increase in granules exhibiting fast movement (>1.5 μm/s), which could be disrupted by nocodazole. These results suggest that Rab27 proteins, particularly Rab27b, play a crucial role in mast cell degranulation and that their action regulates the transition from microtubule to actin‐based motility.
Science | 2014
Mathieu Boissan; Guillaume Montagnac; Qinfang Shen; Lorena Griparic; Jérôme Guitton; Maryse Romao; Nathalie Sauvonnet; Thibault Lagache; Ioan Lascu; Graça Raposo; Céline Desbourdes; Uwe Schlattner; Marie-Lise Lacombe; Simona Polo; Alexander M. van der Bliek; Aurélien Roux; Philippe Chavrier
Supplying power: Right time, right place Cell membranes are very flexible and easily molded to shape; however, to physically pinch off a membrane vesicle from a membrane tube still requires power. A type of molecular machine known as dynamin is involved in this sort of membrane remodeling. Dynamins use guanosine triphosphate (GTP) rather than the more commonly used cellular energy source adenosine triphosphate to work. Boissan et al. now show that two separate dynamins found in the cytoplasm or the mitochondria both use the same sort of enzyme—nucleoside diphosphate kinases—to provide GTP at just the right time and the right place to power membrane fission. Science, this issue p. 1510 During membrane fission, molecular motors are provided with a local energy source. Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)–driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin. In vitro, NM23-H1/H2 were recruited to dynamin-induced tubules, stimulated GTP-loading on dynamin, and triggered fission in the presence of ATP and GDP. NM23-H4, a mitochondria-specific NDPK, colocalized with mitochondrial dynamin-like OPA1 involved in mitochondria inner membrane fusion and increased GTP-loading on OPA1. Like OPA1 loss of function, silencing of NM23-H4 but not NM23-H1/H2 resulted in mitochondrial fragmentation, reflecting fusion defects. Thus, NDPKs interact with and provide GTP to dynamins, allowing these motor proteins to work with high thermodynamic efficiency.
Current Biology | 2011
Guillaume Montagnac; Hélène de Forges; Elizabeth Smythe; Charles Gueudry; Maryse Romao; Jean Salamero; Philippe Chavrier
The small GTP-binding protein ADP-ribosylation factor 6 (ARF6) controls the endocytic recycling pathway of several plasma membrane receptors. We analyzed the localization and GDP/GTP cycle of GFP-tagged ARF6 by total internal reflection fluorescent microscopy. We found that ARF6-GFP associates with clathrin-coated pits (CCPs) at the plasma membrane in a GTP-dependent manner in a mechanism requiring the adaptor protein complex AP-2. In CCP, GTP-ARF6 mediates the recruitment of the ARF-binding domain of downstream effectors including JNK-interacting proteins 3 and 4 (JIP3 and JIP4) after the burst recruitment of the clathrin uncoating component auxilin. ARF6 does not contribute to receptor-mediated clathrin-dependent endocytosis. In contrast, we found that interaction of ARF6 and JIPs on endocytic vesicles is required for trafficking of the transferrin receptor in the fast, microtubule-dependent endocytic recycling pathway. Our findings unravel a novel mechanism of separation of ARF6 activation and effector function, ensuring that fast recycling may be determined at the level of receptor incorporation into CCPs.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Carine Rossé; Catalina Lodillinsky; Laetitia Fuhrmann; Maya Nourieh; Pedro Monteiro; Marie Irondelle; Emilie Lagoutte; Sophie Vacher; François Waharte; Perrine Paul-Gilloteaux; Maryse Romao; Lucie Sengmanivong; Mark Linch; Johan Van Lint; Graça Raposo; Anne Vincent-Salomon; Ivan Bièche; Peter J. Parker; Philippe Chavrier
Significance We characterize a mechanism through which the polarity protein atypical PKCι controls invasion and matrix remodeling by tumor cells by regulating endosome-to-plasma membrane traffic of the membrane type 1-matrix metalloproteinase (MT1-MMP) in breast-cancer cells. Further analysis shows that atypical PKCι and MT1-MMP are co–up-regulated in hormone receptor-negative breast tumors in association with higher risk of metastasis. These findings provide previously unidentified avenues for the design of therapeutic interventions. Dissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co–up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP–containing endosomes, phosphorylates cortactin, which is present in F-actin–rich puncta on MT1-MMP–positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells.
Traffic | 2015
Fernando E. Sepulveda; Agathe Burgess; Xavier Heiligenstein; Nicolas Goudin; Mickaël M. Ménager; Maryse Romao; Marjorie Côte; Nizar Mahlaoui; Alain Fischer; Graça Raposo; Gaël Ménasché; Geneviève de Saint Basile
Chediak–Higashi syndrome (CHS) is caused by mutations in the gene encoding LYST protein, the function of which remains poorly understood. Prominent features of CHS include defective secretory lysosome exocytosis and the presence of enlarged, lysosome‐like organelles in several cell types. In order to get further insight into the role of LYST in the biogenesis and exocytosis of cytotoxic granules, we analyzed cytotoxic T lymphocytes (CTLs) from patients with CHS. Using confocal microscopy and correlative light electron microscopy, we showed that the enlarged organelle in CTLs is a hybrid compartment that contains proteins components from recycling‐late endosomes and lysosomes. Enlargement of cytotoxic granules results from the progressive clustering and then fusion of normal‐sized endolysosomal organelles. At the immunological synapse (IS) in CHS CTLs, cytotoxic granules have limited motility and appear docked while nevertheless unable to degranulate. By increasing the expression of effectors of lytic granule exocytosis, such as Munc13‐4, Rab27a and Slp3, in CHS CTLs, we were able to restore the dynamics and the secretory ability of cytotoxic granules at the IS. Our results indicate that LYST is involved in the trafficking of the effectors involved in exocytosis required for the terminal maturation of perforin‐containing vesicles into secretory cytotoxic granules.