Marzena Maćkowiak
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marzena Maćkowiak.
Brain Research | 2003
Anna Czyrak; Klaudia Czepiel; Marzena Maćkowiak; Agnieszka Chocyk; Krzysztof Wędzony
The present study was designed to investigate the distribution of serotonin 5-HT1A receptor protein (5-HT1A-immunoreactivity) and its localization within cortical pyramidal neurons of the rat cingulate cortex. This experimental direction was inspired by recent data showing the role of 5-HT1A receptors in the pathology of schizophrenia, and in the mechanism of action of novel antipsychotic drugs as well as by the importance of the cingulate cortex in regulation of cognitive functions. It was found that 5-HT1A-immunoreactivity was densely distributed in neuronal eyelash-like elements, and their size, shape and spatial orientation may suggest concentration of 5-HT1A-immunopositive material in the proximal fragments of axons of cortical neurons. Moreover, it was observed that these 5-HT1A-immunopositive fragments were present predominately on proximal fragments of axons of pyramidal neurons, which was evidenced by double labeling experiments using glutamate and non-phosphorylated neurofilament H as markers of the cortical pyramidal cells. The 5-HT1A receptor immunoreactivity was localized distally to the inhibitory GABAergic terminals of chandelier and basket cells surrounding the pyramidal cell bodies and occasionally surrounding short initial segment of axonal hillock of pyramidal neurons. These anatomical data indicate that 5-HT1A receptors might control the excitability and propagation of information transmitted by the pyramidal cells. Moreover, our results indicate that drugs operating via 5-HT1A receptors in the cingulate cortex might control from this level the release of glutamate in the subcortical structures. Finally, the 5-HT1A receptors present in the cingulate cortex, as demonstrated in the present study, may constitute an important target for drugs used to repair dysfunction of glutamate neurotransmission, which is observed for example in schizophrenia.
Neuropsychopharmacology | 2000
Krzysztof Wȩdzony; Marzena Maćkowiak; Wojciech M. Zaja̧czkowski; Katarzyna Fijał; Agnieszka Chocyk; Anna Czyrak
In the present study, we investigated whether the antagonist of 5-HT1A receptors, WAY 100135, was capable of modifying the psychostimulant and psychotomimetic effects of MK-801, a non-competitive antagonist of NMDA receptors. It was found that: 1) WAY 100135 (10 and 20 mg/kg, but not 1.25, 2.5, and 5 mg/kg) transiently, in a dose dependent manner, attenuated the locomotor stimulant effects of MK-801 (0.4 mg/kg). Given alone, WAY 100135 had no effect on the locomotor activity of rats; 2) WAY 100135 (1.25 and 2.5 mg/kg, but not 10 or 20 mg/kg), attenuated or abolished the disruptive effects of MK-801 on the sensorimotor gating measured in a prepulse-induced inhibition of the acoustic startle response paradigm. WAY 100135 in all tested doses had no effect on the sensorimotor gating or amplitude of the acoustic startle response; 3) WAY 100135 (1.25, 2.5 mg/kg, but not 5 mg/kg) attenuated the detrimental effects of MK-801 on working memory and selective attention, measured in a delayed alternation task. Again, given alone, WAY 100135 did not influence the behavior of rats in that experimental paradigm; and 4) MK-801 (0.4 mg/kg) had no effect on the 5-HT1A receptor mRNA level in rat hippocampus, measured 2 and 24 hours after MK-801 administration. These data indicate that 5-HT1A receptors might be involved in the psychotomimetic effects of non-competitive NMDA receptor antagonists. In addition, 5-HT1A serotonin receptor antagonists and partial agonists may have potential antipsychotic properties.
Biochimica et Biophysica Acta | 2010
Sylwia Łukasiewicz; Agnieszka Polit; Sylwia Kedracka-Krok; Krzysztof Wędzony; Marzena Maćkowiak; Marta Dziedzicka-Wasylewska
In the present study, detailed information is presented on the hetero-dimerization of the serotonin 5-HT(2A) receptor and the dopamine D(2) receptor. Biophysical approaches (fluorescence spectroscopy as well as fluorescence lifetime microscopy) were used to determine the degree of fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent protein labeled receptor variants co-expressed in human embryonic kidney 293 cells (HEK293). Recorded data demonstrate the existence of energy transfer between the wild-type forms of 5-HT(2A)R and D(2)R, pointing toward the formation of hetero-5-HT(2A)R/D(2)R dimers and homo-5-HT(2A)R/5-HT(2A)R dimers. Moreover, the present study investigates the role of specific motifs (one containing adjacent arginine residues (217RRRRKR222) in the third intracellular loop (ic3) of D(2)R, and the other consisting of acidic glutamate residues (454EE455) in the C-tail of (5-HT(2A)R) in the formation of noncovalent complexes between these receptors. Our results suggest that these regions of 5-HT(2A)R and D(2)R may be involved in the interaction between these two proteins. On the other hand, the above-mentioned motifs do not play an important role in the homo-dimerization of these receptors. Furthermore, we estimated the influence of specific receptor ligands on the dimerization processes. Agonists (DOI and quinpirole) and antagonists (ketanserin and butaclamol) cause different effects on FRET efficiency depending on whether homo- or hetero-complexes are present. These data may have therapeutic implications, since (using the immunofluorescence double labeling protocols) the co-localization of these two receptors was demonstrated in the medial prefrontal cortex and pars reticulate of the substantia nigra of the rat brain.
Synapse | 1996
Krzysztof Wędzony; Marzena Maćkowiak; Katarzyna Fijał; Krystyna Gołembiowska
We evaluated the impact of conditioned stress on outflow of dopamine in the rat prefrontal cortex. Exposure of rats to an environment associated with aversive stimuli‐foot shock enhanced outflow of dopamine in a similar way as seen during the conditioning session when foot shocks were applied. Diazepam (2.5 and 10 mg/kg) dose‐dependently decreased outflow of dopamine and, when given in a dose of 10 mg/kg, but not 2.5 mg/kg, decreased enhanced dopamine outflow evoked by conditioned stress. On the other hand, ipsapirone (10 mg/kg, but not 2.5 mg/kg) and buspirone (2.5 mg/kg) enhanced basal outflow of dopamine. When ipsapirone (10 mg/kg) and buspirone (2.5 mg/kg) were given to rats exposed to conditioned stress, the stress‐evoked elevation in dopamine outflow was abolished. Ipsapirone in a dose of 2.5 mg/kg was ineffective in the stress paradigm tested. It is concluded that conditioned stress in vivo enhances dopaminergic neurotransmission in the rat prefrontal cortex, this effect being attenuated by diazepam, a classic anxiolytic drug, and by such novel anxiolytics as ipsapirone and buspirone, which operate via serotonergic 5‐HT1A receptors. Although ipsapirone and buspirone blocked stress‐induced enhancement of dopamine outflow, this effect seems to result from their influence on the basal outflow of dopamine. Differential effects of diazepam and 5‐HT1A agonists on basal and stress‐induced alterations in dopamine outflow are discussed in terms of their possible effectiveness in various types of general anxiety disorders.
Neuroscience | 2009
Marzena Maćkowiak; Agnieszka Chocyk; Dorota Dudys; Krzysztof Wędzony
We investigated the role of CB1 receptors in hippocampal-dependent memory consolidation mediated by polysialylated neural cell adhesion molecule (PSA-NCAM) during contextual fear conditioning (CFC). The CB1 receptor agonist 3-(1,1-dimethylheptyl)-(-)-11-hydroxy-Delta(8)-tetrahydrocannabinol (HU-210) (0.1 mg/kg) was given immediately after training during the memory consolidation phase, and freezing behavior was measured 24 h after conditioning. Administration of HU-210 attenuated freezing behavior measured in CFC. Western blot analysis showed that CFC induced a decrease in the expression of NCAM-180, but did not change the level of NCAM-140 and increased PSA-NCAM expression measured 24 h after training in the rat hippocampus. HU-210 (0.1 mg/kg) injection did not affect the reduction in NCAM-180 levels induced by CFC, but it blocked the increase in PSA-NCAM expression. Since the dentate gyrus (DG) of the hippocampus is known to be involved in memory consolidation and expresses a high level of PSA-NCAM protein, we measured the effects of CFC and HU-210 administration on PSA-NCAM-immunoreactive (IR) cells in the DG. CFC caused an increase in the number of PSA-NCAM-IR cells in the DG, but not K(i)-67- or doublecortin (DCX)-IR cells. This increase in PSA-NCAM-IR cells was abolished by HU-210 injection. Administration of the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM-251) (3 mg/kg immediately before HU-210) inhibited the effects of HU-210 on freezing behavior and PSA-NCAM expression in the DG. These results indicate that activation of CB1 receptors disturbs consolidation of fear memory in CFC, likely by affecting PSA-NCAM expression in the DG, which plays an important role in synaptic rearrangement during the formation of memory traces.
Neuroscience | 2009
Małgorzata Kajta; A.K. Wójtowicz; Marzena Maćkowiak; Władysław Lasoń
Activation of aryl hydrocarbon receptors (AhRs) induces neuronal damage, but the mechanism by which this occurs is largely unknown. This study evaluated the effects of an AhR agonist, beta-naphthoflavone, on apoptotic pathways in mouse primary neuronal cell cultures. beta-Naphthoflavone (0.1-100 micronhanced caspase-3 activity and lactate dehydrogenase (LDH) release in neocortical and hippocampal cells. These data were supported at the cellular level with Hoechst 33342 and calcein AM staining. alpha-Naphthoflavone inhibited the action of beta-naphthoflavone, thus confirming specific activation of AhRs. A high-affinity estrogen receptor (ER) antagonist, ICI 182,780, and a selective estrogen receptor modulator (SERM), tamoxifen, enhanced beta-naphthoflavone-mediated apoptosis. Another SERM, raloxifene, and an ERalpha antagonist, methyl-piperidino-pyrazole, did not affect beta-naphthoflavone-induced caspase-3 activity. However, they inhibited beta-naphthoflavone-induced LDH release at a late hour of treatment, thus suggesting delayed control of AhR-mediated neuronal cell death. The apoptotic effects of beta-naphthoflavone were accompanied by increased levels of AhRs, and these receptors colocalized with ERbeta as demonstrated by confocal microscopy. These data strongly support apoptotic effects of AhR activation in neocortical and hippocampal tissues. Moreover, this study provides evidence for direct interaction of the AhR-mediated apoptotic pathway with estrogen receptor signaling, which provides insight into new strategies to treat or prevent AhR-mediated neurotoxicity.
European Journal of Pharmacology | 1996
Krzysztof Wȩdzony; Marzena Maćkowiak; Katarzyna Fijał; Krystyna Gołembiowska
In the present study, we investigated both the effect of ipsapirone on the dopamine outflow and its selectivity towards 5-HT1A receptors in the rat prefrontal cortex. Using a brain microdialysis method in freely moving animals, it was found that ipsapirone, 5 and 10 mg/kg dose-dependently enhanced the outflow of dopamine, while 2.5 mg/kg was ineffective. The above effects of ipsapirone were mimicked by buspirone (2.5 and 5 mg/kg), another 5-HT1A receptor agonist, but not 1-PP (1-pyrimidinylpiperazine, 5 mg/kg)-a centrally active metabolite of ipsapirone. The effect of ipsapirone (10 mg/kg) on the dopamine outflow in the rat prefrontal cortex was antagonized by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine (NAN-190, 1 mg/kg) and (N-tert-butyl-3-(4-(2-methoxyphenylpiperazin-1-yl)-2- phenylpropionamide (WAY 100135, 10 mg/k.g.), i.e. substances with agonistic/antagonistic and antagonistic properties in relation to 5-HT1A receptors, respectively. NAN-190 (1 mg/kg) enhanced the outflow of dopamine, while WAY 100135 (10 mg/kg) failed to alter it. It is concluded that 5-HT1A receptor agonists may be involved in the regulation of dopaminergic neurotransmission in the rat prefrontal cortex and may have therapeutic potential in the treatment of disorders associated with dysfunction of the mesocortical dopaminergic system.
Brain Research | 2005
Marzena Maćkowiak; Katarzyna Markowicz-Kula; Katarzyna Fijał; Krzysztof Wędzony
Recent data indicating that addictive substances are able to alter brain plasticity and its morphology inclined us to determine whether acute and chronic cocaine administration could modify the expression of a polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) in the dentate gyrus of the rat hippocampus. Alterations in the PSA-NCAM expression are known to effect a variety of neuroanatomical rearrangements in the brain structure. Cocaine was administered acutely (15 mg/kg, i.p.) or repeatedly (15 mg/kg, i.p. once a day for five consecutive days). The number of PSA-NCAM immunopositive cells was determined at six time points after cocaine treatment: 6 h and 1, 2, 4, 6, and 10 days (both in acute and repeated treatment). It was found that a single injection of cocaine induced a time-dependent decrease in the number of PSA-NCAM cells in the dentate gyrus. The decrease was observed on day 1 after cocaine treatment and lasted for at least 6 days. In contrast, an increase in the number of PSA-NCAM-positive cells in the dentate gyrus was observed 2 and 4 days after the last dose of repeated cocaine. It is concluded that cocaine can evoke long-lasting changes in the PSA-NCAM protein expression in the dentate gyrus and that the direction of cocaine-induced PSA-NCAM changes depends on the regimen of cocaine administration. It is postulated that cocaine may have impact on hippocampal plasticity and subsequent processes that are controlled by plastic changes in the hippocampal structure.
Brain Research | 1997
Krzysztof Wędzony; Marzena Maćkowiak; Anna Czyrak; Katarzyna Fijał; B Michalska
In the present study, we investigated the impact of MK-801, a non-competitive NMDA receptor antagonist, on the density of serotonergic receptors of the 5-HT1A subtype and on the metabolism of serotonin in various regions of the rat brain containing terminals and cell bodies of serotonergic neurons. The binding of [3H]8-OH-DPAT to 5-HT1A serotonin receptors was increased after MK-801 (0.4 mg/kg) as was shown by autoradiographic studies in the frontal, cingulate and part of enthorinal cortex, subregions of the hippocampus and raphe nuclei. The above receptor changes were observed at 2 h and, in some brain regions, at 24 h after MK-801. In saturation binding studies, an increase in the Bmax value in the rat hippocampus was found after MK-801 (0.4 mg/kg) while no changes being noted in the Kd value. MK-801 (0.4 mg/kg) increased the concentration of the serotonin metabolite 5-HIAA in the prefrontal cortex and hippocampus, respectively, at 2 and 3 or 3 h after administration, being without effect on the level of serotonin. In the dorsal raphe nucleus, MK-801 (0.4 mg/kg) decreased the level of serotonin without affecting the level 5-HIAA (0.5 h after administration) or increased the level of 5-HIAA without altering the concentration of serotonin (3 h after administration). It is concluded that single administration of MK-801 may alter the density of serotonergic 5-HT1A receptors and in consequence influence the function of the central nervous system associated with activation of 5-HT1A receptors.
Neuroscience | 2008
Krzysztof Wędzony; Katarzyna Fijał; Marzena Maćkowiak; Agnieszka Chocyk; W. Zajaczkowski
The malfunction of glutamatergic neurotransmission in the neonatal or postnatal periods may be a risk factor for the appearance of neuroanatomical, neurochemical or functional changes that are characteristic of schizophrenia. Thus, the present study was undertaken to investigate whether blockade of N-methyl-d-aspartate (NMDA) receptors in the postnatal period influences rat behavior in tests characterizing schizophrenia-like deficits such as psychomotor agitation, impairments of sensorimotor gating, working memory, and intensity of social interactions. (E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP 40116), a competitive antagonist of NMDA receptors, was given postnatally (1.25 mg/kg on days 1, 3, 6, 9; 2.5 mg/kg on days 12, 15, 18; and finally 5 mg/kg on day 21, all injections s.c.), and rats were tested at 60 days old. We found that blockade of NMDA receptors in the postnatal period led to an enhancement of exploration, mimicking psychomotor agitation, impairments in sensorimotor gating as measured by a prepulse-evoked inhibition of acoustic startle response, and an impaired working memory, as measured by an increase in the latency to achieve accurate rate of response in the delayed alternation task. Decreases in non-aggressive social interactions and increases in aggressive interactions were also observed. In addition to cognitive deficits typical of schizophrenia, rats treated postnatally with NMDA receptor antagonists also showed higher level of fear exhibited in the elevated plus maze. Thus, the blockade of NMDA receptors in the postnatal period may model deficits that are characteristic of schizophrenia.