Marzena Pazgier
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marzena Pazgier.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Marzena Pazgier; Min Liu; Guozhang Zou; Weirong Yuan; Changqing Li; Chong Li; Jing Li; Juahdi Monbo; Davide Zella; Sergey G. Tarasov; Wuyuan Lu
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53—a cellular process initiated by MDM2 and/or MDMX binding to the N-terminal transactivation domain of p53. MDM2 and MDMX in many tumors confer p53 inactivation and tumor survival, and are important molecular targets for anticancer therapy. We screened a duodecimal peptide phage library against site-specifically biotinylated p53-binding domains of human MDM2 and MDMX chemically synthesized via native chemical ligation, and identified several peptide inhibitors of the p53-MDM2/MDMX interactions. The most potent inhibitor (TSFAEYWNLLSP), termed PMI, bound to MDM2 and MDMX at low nanomolar affinities—approximately 2 orders of magnitude stronger than the wild-type p53 peptide of the same length (ETFSDLWKLLPE). We solved the crystal structures of synthetic MDM2 and MDMX, both in complex with PMI, at 1.6 Å resolution. Comparative structural analysis identified an extensive, tightened intramolecular H-bonding network in bound PMI that contributed to its conformational stability, thus enhanced binding to the 2 oncogenic proteins. Importantly, the C-terminal residue Pro of PMI induced formation of a hydrophobic cleft in MDMX previously unseen in the structures of p53-bound MDM2 or MDMX. Our findings deciphered the structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX, shedding new light on structure-based rational design of different classes of p53 activators for potential therapeutic use.
Science | 2012
Hiutung Chu; Marzena Pazgier; Grace Jung; Sean Paul Nuccio; Patricia A. Castillo; Maarten F. de Jong; Maria G. Winter; Sebastian E. Winter; Jan Wehkamp; Bo Shen; Nita H. Salzman; Mark A. Underwood; Renée M. Tsolis; Glenn M. Young; Wuyuan Lu; Robert I. Lehrer; Andreas J. Bäumler; Charles L. Bevins
Netting the Bad Guys Antimicrobial peptides are an evolutionarily conserved component of innate immunity in the intestine. One family, α-defensins, typically exert their antimicrobial effects through microbicidal activity against bacteria. Humans express only two α-defensins, human defensin 5 (HD5) and HD6. HD5 exhibits bactericidal activity and plays a role in shaping the bacterial composition of the gut. HD6, on the other hand, does not show bactericidal activity and its function in the gut is unclear. Now, Chu et al. (p. 477, published online 21 June; see the Perspective by Ouellette and Selsted) show that HD6 protects against bacterial pathogens. Rather than killing them directly, HD6 binds to bacteria surface proteins and, through a process of self-assembly, forms fibrils and nanonets that ensnare invading bacterial pathogens. Rather than killing bacteria directly, a gut antimicrobial peptide forms netlike structures that ensnare invading bacteria. Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Mugen Liu; Changqing Li; Marzena Pazgier; Y Mao; Y Lv; B Gu; G Wei; Weirong Yuan; Changyou Zhan; Weiyue Lu; Wuyuan Lu
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53, conferring tumor development and survival. Antagonists targeting the p53-binding domains of MDM2 and MDMX kill tumor cells both in vitro and in vivo by reactivating the p53 pathway, promising a class of antitumor agents for cancer therapy. Aided by native chemical ligation and mirror image phage display, we recently identified a D-peptide inhibitor of the p53-MDM2 interaction termed DPMI-α (TNWYANLEKLLR) that competes with p53 for MDM2 binding at an affinity of 219 nM. Increased selection stringency resulted in a distinct D-peptide inhibitor termed DPMI-γ (DWWPLAFEALLR) that binds MDM2 at an affinity of 53 nM. Structural studies coupled with mutational analysis verified the mode of action of these D-peptides as MDM2-dependent p53 activators. Despite being resistant to proteolysis, both DPMI-α and DPMI-γ failed to actively traverse the cell membrane and, when conjugated to a cationic cell-penetrating peptide, were indiscriminately cytotoxic independently of p53 status. When encapsulated in liposomes decorated with an integrin-targeting cyclic-RGD peptide, however, DPMI-α exerted potent p53-dependent growth inhibitory activity against human glioblastoma in cell cultures and nude mouse xenograft models. Our findings validate D-peptide antagonists of MDM2 as a class of p53 activators for targeted molecular therapy of malignant neoplasms harboring WT p53 and elevated levels of MDM2.
Journal of Biological Chemistry | 2007
Guozhang Zou; Erik de Leeuw; Chong Li; Marzena Pazgier; Changqing Li; Pengyun Zeng; Weiyue Lu; Jacek Lubkowski; Wuyuan Lu
Human defensins are a family of small antimicrobial proteins found predominantly in leukocytes and epithelial cells that play important roles in the innate and adaptive immune defense against microbial infection. The most distinct molecular feature of defensins is cationicity, manifested by abundant Arg and/or Lys residues in their sequences. Sequence analysis indicates that Arg is strongly selected over Lys in α-defensins but not in β-defensins. To understand this Arg/Lys disparity in defensins, we chemically synthesized human α-defensin 1 (HNP1) and several HNP1 analogs where three Arg residues were replaced by each of the following six α-amino acids: Lys, ornithine (Orn), diaminobutyric acid (Dab), diaminopropionic acid (Dap), N,N-dimethyl-Lys (diMeLys), and homo-Arg (homoArg). In addition, we prepared human β-defensin 1 (hBD1) and Lys→ArghBD1 in which all four Lys residues were substituted for Arg. Bactericidal activity assays revealed the following. 1) Arg-containing HNP1 and Lys→ArghBD1 are functionally better than Lys-HNP1 and hBD1, respectively; the difference between Arg and Lys is more evident in the α-defensin than in the β-defensin and is more evident at low salt concentrations than at high salt concentrations. 2) For HNP1, the Arg/Lys disparity is much more pronounced with Staphylococcus aureus than with Escherichia coli, and the Arg-rich HNP1 kills bacteria faster than its Lys-rich analog. 3) Arg and Lys appear to have optimal chain lengths for bacterial killing as shortening Lys or lengthening Arg in HNP1 invariably becomes functionally deleterious. Our findings provide insights into the Arg/Lys disparity in defensins, and shed light on the cationicity of defensins with respect to their antimicrobial activity and specificity.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Yongjun Guan; Marzena Pazgier; Mohammad M. Sajadi; Roberta Kamin-Lewis; Salma Al-Darmarki; Robin Flinko; Elena Lovo; Xueji Wu; James E. Robinson; Michael S. Seaman; Timothy Fouts; Robert C. Gallo; Anthony L. DeVico; George K. Lewis
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain; and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. Thus, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.
Journal of Molecular Biology | 2010
Chong Li; Marzena Pazgier; Changqing Li; Weirong Yuan; Min Liu; Gang Wei; Weiyue Lu; Wuyuan Lu
Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly 2 orders of magnitude higher than that of (17-28)p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical alpha-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp, and Leu dominate PMI or (17-28)p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and (17-28)p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and (17-28)p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual-specific antagonist of MDM2 and MDMX reported to date, registering respective K(d) values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-(25-109)MDM2 was determined at 1.95 A, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized intermolecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions.
Journal of Biological Chemistry | 2009
Gang Wei; Erik de Leeuw; Marzena Pazgier; Weirong Yuan; Guozhang Zou; Jianfeng Wang; Bryan Ericksen; Weiyue Lu; Robert I. Lehrer; Wuyuan Lu
Despite the small size and conserved tertiary structure of defensins, little is known at a molecular level about the basis of their functional versatility. For insight into the mechanism(s) of defensin function, we prepared enantiomeric pairs of four human defensins, HNP1, HNP4, HD5, and HBD2, and studied their killing of bacteria, inhibition of anthrax lethal factor, and binding to HIV-1 gp120. Unstructured HNP1, HD5, and HBD3 and several other human α- and β-defensins were also examined. Crystallographic analysis showed a plane of symmetry that related LHNP1 and DHNP1 to each other. Either d-enantiomerization or linearization significantly impaired the ability of HNP1 and HD5 to kill Staphylococcus aureus but not Escherichia coli. In contrast, LHNP4 and DHNP4 were equally bactericidal against both bacteria. d-Enantiomers were generally weaker inhibitors or binders of lethal factor and gp120 than their respective native, all-l forms, although activity differences were modest, particularly for HNP4. A strong correlation existed among these different functions. Our data indicate: (a) that HNP1 and HD5 kill E. coli by a process that is mechanistically distinct from their actions that kill S. aureus and (b) that chiral molecular recognition is not a stringent prerequisite for other functions of these defensins, including their ability to inhibit lethal factor and bind gp120 of HIV-1.
Journal of Biological Chemistry | 2007
Marzena Pazgier; Adam Prahl; David M. Hoover; Jacek Lubkowski
Defensins are small (30–45 amino acid residues) cationic proteins with broad antimicrobial activity against many bacteria and fungi, some enveloped viruses, and other activities such as chemoattraction of a range of different cell types to the sites of inflammation. These proteins represent attractive targets for developing novel antimicrobial agents and modulators of immune responses with therapeutic applicability. In this report, we present the results of functional and structural studies of 26 single-site mutants of human β-defensin 1 (hBD1). All mutants were assayed for antimicrobial activity against Escherichia coli (ATCC strain 25922) and for chemotactic activity with CCR6-transfected HEK293 cells. To analyze the structural implications of mutagenesis and to verify the correctness of the disulfide connectivity, we used x-ray crystallography to conduct complete structural studies for 10 mutants in which the topology of disulfides was the same as in the native hBD1. Mutations did not induce significant changes of the tertiary structure, suggesting that the observed alterations of biological properties of the mutants were solely associated with changes in the respective side chains. We found that cationic residues located near the C terminus (Arg29, Lys31, Lys33, and Lys36) of hBD1 define most of the anti-E. coli in vitro activity of this protein. In turn, nearly all mutations altering the CCR6-mediated chemotaxis are located at one area of the protein, defined by the N-terminal α-helical region (Asp1... Ser8) and a few topologically adjacent residues (Lys22, Arg29, and Lys33). These experimental results allow for the first time drafting of the CCR6-epitope for a defensin molecule.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jonathan Richard; Maxime Veillette; Nathalie Brassard; Shilpa S. Iyer; Michel Roger; Loïc Martin; Marzena Pazgier; Arne Schön; Ernesto Freire; Jean-Pierre Routy; Amos B. Smith; Jongwoo Park; David M. Jones; Joel R. Courter; Bruno Melillo; Daniel E. Kaufmann; Beatrice H. Hahn; Sallie R. Permar; Barton F. Haynes; Navid Madani; Joseph Sodroski; Andrés Finzi
Significance The prevention of HIV-1 transmission and progression likely requires approaches that can specifically eliminate HIV-1-infected cells. Rationally designed CD4-mimetic compounds (CD4mc) have been shown to efficiently inhibit viral entry and sensitize HIV-1 particles to neutralization by otherwise nonneutralizing CD4-induced antibodies. Here we found that CD4mc can also sensitize HIV-1-infected cells to antibody-dependent cell-mediated cytotoxicity (ADCC). Indeed, CD4mc induced the CD4-bound conformation of HIV-1 envelope glycoproteins, exposing CD4-induced epitopes recognized by easy-to-elicit antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we provide evidence that CD4mc can efficiently sensitize primary CD4 T cells from HIV-1-infected individuals to ADCC mediated by autologous sera and effector cells. Therefore, CD4mc might represent an attractive approach to prevent and control HIV-1 infection. HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.
Current HIV Research | 2013
Justin Pollara; Mattia Bonsignori; M. Anthony Moody; Marzena Pazgier; Barton F. Haynes; Guido Ferrari
Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC.