Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marzia Arese is active.

Publication


Featured researches published by Marzia Arese.


Biochimica et Biophysica Acta | 2012

Cytochrome c oxidase and nitric oxide in action: Molecular mechanisms and pathophysiological implications

Paolo Sarti; Elena Forte; Daniela Mastronicola; Alessandro Giuffrè; Marzia Arese

BACKGROUND The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60s. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80s, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.


Biochimica et Biophysica Acta | 2014

Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress

Alessandro Giuffrè; Vitaliy B. Borisov; Marzia Arese; Paolo Sarti; Elena Forte

Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme-copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The nitrite reductase from Pseudomonas aeruginosa: Essential role of two active-site histidines in the catalytic and structural properties

Francesca Cutruzzolà; Kieron Brown; Emma K. Wilson; Andrea Bellelli; Marzia Arese; Mariella Tegoni; Christian Cambillau; Maurizio Brunori

Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.


Advances in Experimental Medicine and Biology | 2012

Mitochondria and Nitric Oxide: Chemistry and Pathophysiology

Paolo Sarti; Marzia Arese; Elena Forte; Alessandro Giuffrè; Daniela Mastronicola

Cell respiration is controlled by nitric oxide (NO) reacting with respiratory chain complexes, particularly with Complex I and IV. The functional implication of these reactions is different owing to involvement of different mechanisms. Inhibition of complex IV is rapid (milliseconds) and reversible, and occurs at nanomolar NO concentrations, whereas inhibition of complex I occurs after a prolonged exposure to higher NO concentrations. The inhibition of Complex I involves the reversible S-nitrosation of a key cysteine residue on the ND3 subunit. The reaction of NO with cytochrome c oxidase (CcOX) directly involves the active site of the enzyme: two mechanisms have been described leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) or a more labile nitrite-derivative (CcOX-NO (2) (-) ). Both adducts are inhibited, though with different K(I); one mechanism prevails on the other depending on the turnover conditions and availability of substrates, cytochrome c and O(2). SH-SY5Y neuroblastoma cells or lymphoid cells, cultured under standard O(2) tension, proved to follow the mechanism leading to degradation of NO to nitrite. Formation of CcOX-NO occurred upon rising the electron flux level at this site, artificially or in the presence of higher amounts of endogenous reduced cytochrome c. Taken together, the observations suggest that the expression level of mitochondrial cytochrome c may be crucial to determine the respiratory chain NO inhibition pathway prevailing in vivo under nitrosative stress conditions. The putative patho-physiological relevance of the interaction between NO and the respiratory complexes is addressed.


Journal of Inorganic Biochemistry | 2002

Pseudomonas aeruginosa cytochrome C551: Probing the role of the hydrophobic patch in electron transfer

Francesca Cutruzzolà; Marzia Arese; Graziella Ranghino; Gertie van Pouderoyen; Gerard W. Canters; Maurizio Brunori

Cytochrome c(551) from Pseudomonas aeruginosa is a monomeric redox protein of 82 amino-acid residues, involved in dissimilative denitrification as the physiological electron donor of cd(1) nitrite reductase. The distribution of charged residues on the surface of c(551) is very anisotropic: one side is richer in acidic residues whereas the other shows a ring of positive side chains, mainly lysines, located at the border of an hydrophobic patch which surrounds the heme crevice. In order to map in cytochrome c(551) the surface involved in electron transfer, we have introduced specific mutations in three residues belonging to the hydrophobic patch, namely Val23-->Asp, Pro58-->Ala and Ile59-->Glu. The effect of these mutations was analyzed studying both the self-exchange rate and the electron-transfer activity towards P. aeruginosa cd(1) nitrite reductase, the physiological partner and P. aeruginosa azurin, a copper protein often used as a model redox partner in vitro. Our results show that introduction of a negative charge in the hydrophobic patch severely hampers both homonuclear and heteronuclear electron transfer.


Cellular and Molecular Life Sciences | 2003

Control of respiration by nitric oxide in Keilin-Hartree particles, mitochondria and SH-SY5Y neuroblastoma cells

Daniela Mastronicola; Maria Luisa Genova; Marzia Arese; Maria Cecilia Barone; Alessandro Giuffrè; C. Bianchi; Maurizio Brunori; Giorgio Lenaz; Paolo Sarti

The pattern of cytochrome c oxidase inhibition by nitric oxide (NO) was investigated polarographically using Keilin-Hartree particles, mitochondria and human neuroblastoma cells. NO reacts with purified cytochrome c oxidase forming either a nitrosyl- or a nitrite-inhibited derivative, displaying distinct kinetics and light sensitivity of respiration recovery in the absence of free NO. Keilin-Hartree particles or cells, respiring either on endogenous substrates alone or in the presence of ascorbate, as well as state 3and state 4mitochondria respiring on glutamate and malate, displayed the rapid recovery characteristic of the nitrite derivative. All systems, when respiring in the presence of tetramethyl-p-phenylenediamine, were characterised by the slower, light-sensitive recovery typical of the nitrosyl derivative. Together the results suggest that the reaction of NO with cytochrome c oxidase in situ follows two alternative inhibition pathways, depending on the electron flux through the respiratory chain.


FEBS Letters | 1997

Mutagenesis of nitrite reductase from Pseudomonas aeruginosa: Tyrosine-10 in the c heme domain is not involved in catalysis

Francesca Cutruzzolà; Marzia Arese; Sabrina Grasso; Andrea Bellelli; Maurizio Brunori

In Pseudomonas aeruginosa, conversion of nitrite to NO in dissimilatory denitrification is catalyzed by the enzyme nitrite reductase (NiR), a homodimer containing a covalently bound c heme and a d1 heme per subunit. We report the purification and characterization of the first single mutant of P. aeruginosa cd1 NiR in which Tyr10 has been replaced by Phe; this amino acid was chosen as a possibly important residue in the catalytic mechanism of this enzyme based on the proposal (Fülöp, V., Moir, J.W.B., Ferguson, S.J. and Hajdu, J. (1995) Cell 81, 369–377) that the topologically homologous Tyr25 plays a crucial role in controlling the activity of the cd1 NiR from Thiosphaera pantotropha. Our results show that in P. aeruginosa NiR substitution of Tyr10 with Phe has no effect on the activity, optical spectroscopy and electron transfer kinetics of the enzyme, indicating that distal coordination of the Fe3+ of the d1 heme is provided by different side‐chains in different species.


International Journal of Cell Biology | 2012

The Chemical Interplay between Nitric Oxide and Mitochondrial Cytochrome c Oxidase: Reactions, Effectors and Pathophysiology

Paolo Sarti; Elena Forte; Alessandro Giuffrè; Daniela Mastronicola; Maria Chiara Magnifico; Marzia Arese

Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO2  −, PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O2 competitiveness. In the mitochondrion, during turnover with O2, one pathway prevails over the other one depending on NO, cytochrome c 2+ and O2 concentration. High cytochrome c 2+, and low O2 proved to be crucial in favoring CcOX nitrosylation, whereas under-standard cell-culture conditions formation of the nitrite derivative prevails. All together, these findings suggest that NO can modulate physiologically the mitochondrial respiratory/OXPHOS efficiency, eventually being converted to nitrite by CcOX, without cell detrimental effects. It is worthy to point out that nitrite, far from being a simple oxidation byproduct, represents a source of NO particularly important in view of the NO cell homeostasis, the NO production depends on the NO synthases whose activity is controlled by different stimuli/effectors; relevant to its bioavailability, NO is also produced by recycling cell/body nitrite. Bioenergetic parameters, such as mitochondrial ΔΨ, lactate, and ATP production, have been assayed in several cell lines, in the presence of endogenous or exogenous NO and the evidence collected suggests a crucial interplay between CcOX and NO with important energetic implications.


Journal of Alzheimer's Disease | 2013

Characterization of Mitochondrial Dysfunction in the 7PA2 Cell Model of Alzheimer's Disease

Nina Krako; Maria Chiara Magnifico; Marzia Arese; Giovanni Meli; Elena Forte; Agnese Lecci; Annalisa Manca; Alessandro Giuffrè; Daniela Mastronicola; Paolo Sarti; Antonino Cattaneo

The 7WD4 and 7PA2 cell lines, widely used as cellular models for Alzheimers disease (AD), have been used to investigate the effects of amyloid-β protein precursor overexpression and amyloid-β (Aβ) oligomer accumulation on mitochondrial function. Under standard culture conditions, both cell lines, compared to Chinese hamster ovary (CHO) control cells, displayed an ~5% decrease of O2 respiration as sustained by endogenous substrates. Functional impairment of the respiratory chain was found distributed among the protein complexes, though more evident at the level of complex I and complex IV. Measurements of ATP showed that its synthesis by oxidative phosphorylation is decreased in 7WD4 and 7PA2 cells by ~25%, this loss being partly compensated by glycolysis (Warburg effect). Compensation proved to be more efficient in 7WD4 than in 7PA2 cells, the latter cell line displaying the highest reactive oxygen species production. The strongest deficit was observed in mitochondrial membrane potential that is almost 40% and 60% lower in 7WD4 and 7PA2 cells, respectively, in comparison to CHO controls. All functional parameters point to a severe bioenergetic impairment of the AD cells, with the extent of mitochondrial dysfunction being correlated to the accumulation of Aβ peptides and oligomers.


Cellular and Molecular Life Sciences | 2004

Morphine but not fentanyl and methadone affects mitochondrial membrane potential by inducing nitric oxide release in glioma cells

Daniela Mastronicola; E. Arcuri; Marzia Arese; A. Bacchi; S. Mercadante; P. Cardelli; G. Citro; Paolo Sarti

Abstract.We have observed that treatment of human glioma cells with morphine in the nanomolar range of concentration affects the mitochondrial membrane potential. The effect is specific to morphine and is mediated by naloxone-sensitive receptors, and is thus better observed on glioma cells treated with desipramine; moreover, the mitochondrial impairment is not inducible by fentanyl or methadone treatment and is prevented by the nitric oxide (NO) synthase inhibitor L-NAME. We conclude that in cultured glioma cells, the morphine-induced NO release decreases the mitochondrial membrane potential, as one might expect based on the rapid inhibition of the respiratory chain by NO. The identification of new intra-cellular pathways involved in the mechanism of action of morphine opens additional hypotheses, providing a novel rationale relevant to the therapy and toxicology of opioids.

Collaboration


Dive into the Marzia Arese's collaboration.

Top Co-Authors

Avatar

Paolo Sarti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Forte

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Brunori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Bellelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Micol Falabella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Emma K. Wilson

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge